
props and state are CORE concepts of React. Actually,

only changes in props and/ or state trigger React to re-

render your components and potentially update the DOM in

the browser (a detailed look at how React checks whether

to really touch the real DOM is provided in section 6).

Props

props allow you to pass data from a parent (wrapping)

component to a child (embedded) component.

Example:

AllPosts Component:

. const posts = () => {

. return (

. <div>

. <Post title="My first Post" />

. </div>

.);

. }

Here, title is the custom property (prop) set up on the

custom Post component. We basically replicate the

default HTML attribute behavior we already know

(e.g. <input type="text"> informs the browser about

how to handle that input).

Post Component:

. const post = (props) => {

. return (

. <div>

. <h1>{props.title}</h1>

. </div>

.);

. }

The Post component receives the props argument. You

can of course name this argument whatever you want - it's

your function definition, React doesn't care! But React will

pass one argument to your component function => An

object, which contains all properties you set up

on <Post ... /> .

{props.title} then dynamically outputs the title

property of the props object - which is available since we

set the title property inside AllPosts component (see

above).

 

State

Whilst props allow you to pass data down the component

tree (and hence trigger an UI update), state is used to

change the component, well, state from within. Changes to

state also trigger an UI update.

Example:

NewPost Component:

. class NewPost extends Component { // state can only be

accessed in class-based components!

. state = {

. counter: 1

. };

.

. render () { // Needs to be implemented in class-based

components! Needs to return some JSX!

. return (

. <div>{this.state.counter}</div>

.);

. }

. }

Here, the NewPost component contains state . Only

class-based components can define and use state . You

can of course pass the state down to functional

components, but these then can't directly edit it.

state simply is a property of the component class, you

have to call it state though - the name is not optional.

You can then access it via this.state in your class JSX

code (which you return in the required render() method).

Whenever state changes (taught over the next lectures),

the component will re-render and reflect the new state. The

difference to props is, that this happens within one and

the same component - you don't receive new data (props)

from outside!

