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Professional testing of software is an essential 
task that requires a profound knowledge of 
testing techniques. The International Software 
Testing Qualifications Board (ISTQB) has de-
veloped a universally accepted, international 
qualification scheme aimed at software and 
system testing professionals, and has created 
the Syllabi and Tests for the Certified Tester. 
Today about 300,000 people have taken the 
ISTQB certification exams.

The authors of Software Testing Foundations, 
4th Edition, are among the creators of the 
Certified Tester Syllabus and are  currently ac-
tive in the ISTQB. This thoroughly revised and 
updated fourth edition covers the Founda-
tion Level (entry level) and teaches the most 
important methods of software testing. It is 
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designed for self-study and provides the infor-
mation necessary to pass the Certified Tester-
Foundations Level exam, version 2011, as 
defined by the ISTQB. Also in this new edition, 
technical terms have been precisely stated 
according to the recently revised and updated 
ISTQB glossary.

Topics covered:
• Fundamentals of Testing
• Testing and the Software Lifecycle
• Static and Dynamic Testing Techniques
• Test Management
• Test Tools

Also mentioned are some updates to the 
 syllabus that are due in 2015. 4th E
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 Preface v
Preface

Worldwide successIn most industrialized countries, the Certified Tester has gained accept-
ance as a training and education tool for testers. At the end of 2013, the 
number of certified testers worldwide was more than 300,000. Chris 
Carter, president of the International Software Testing Qualifications 
Board (ISTQB), says this: “I think the scheme has been so successful 
because we freely offer our syllabi and glossary to the public, which helps 
to standardize professional terminology. We also offer certifications at a 
range of levels, from foundation through advanced to expert, allowing test-
ing professionals to be supported right through their careers and keeping 
them up-to-date with the world’s best practices.”

Certified Testers 
in some countries

There are more than 20,000 Certified Testers in Germany, more than 
1,000 in Norway, and more than 2,000 in Sweden. Even the small country 
of Iceland has over 100 Certified Testers. In more and more countries, 
being a Certified Tester is a prerequisite to being employed in testing or to 
be a contractor in testing services.

A 2011 poll (taken in Germany, Switzerland, and Austria) revealed 
that nearly 75% of the people asked know the ISTQB scheme. More than 
70% of them already have a Foundation Level Certificate. About 90% said 
the training was helpful. 

Ten-year anniversary of the 

German version of this book

The first version of this book was published in German in 2002. The 
first English edition was published in 2006. The German issue is in its 5th

edition and the English version is in its 4th edition. This book conforms to 
the ISTQB syllabus “Certified Software Tester—Foundation Level” version 
2011. Most major changes planned for the 2015 version have been 
included and are specially marked.

Ten years is a long time in the IT industry; new developments and 
paradigms are encouraged and used, and new and improved tools are 
available. On the other hand, there is some basic knowledge in computer 
science that does not change. In this book, we have concentrated on 
generic knowledge and techniques. We have not described techniques 



vi  Preface

whose benefits are yet unknown, or techniques that have to show their 
practical validity and applicability. The same is true about “special disci-
plines” in testing; testing of web applications, testing in agile projects, or 
testing of embedded or mobile systems, for example. These techniques are 
not part of the standard foundations. There is other literature about such 
specialized areas.

Books for the 

advanced level

The Certified Tester training scheme consists of three levels (see 
Chapter 1). Besides the foundation knowledge (Foundation Level) 
described in detail in this text, books are also available from Rocky Nook 
for the syllabus for the Advanced Level. These books are available:

■ The Software Test Engineer's Handbook [Bath 14] (for Test Analyst 
and Technical Test Analyst) 

■ Advanced Software Testing—Vol. 1 – 3 [Black 08, 09, 11]

Syllabi for the Expert Level also exist: “Improving the Test Process”1 and 
“Test Management.” The syllabi for “Test Automation” and “Security Test-
ing” are currently being finished. 

The knowledge is much 

asked for in the IT world

The broad acceptance of this training scheme is made apparent by the 
powerful and continuous growth in ISTQB membership. 47 Testing 
Boards represent more than 70 countries. Ten years ago, there were a 
handful of members. Now ISTQB is represented in all parts of the world. 
The Certified Tester has grown to be a renowned trademark in the IT 
industry worldwide, and has considerably contributed to improving test-
ing in the software development process.

Testing is taught at colleges 

and universities

The number of colleges that have integrated the Certified Tester 
scheme into their teaching is impressive. Courses are taught at places like 
Aachen and Bremen (Germany), Oslo (Norway), Reykjavik (Iceland), and 
Wismar (Germany). National Testing Boards usually decide which col-
leges offer these courses. Their relevance is shown by many job advertise-
ments as well as requests for tenders. For personnel in software develop-
ment it is more or less required to have some basic knowledge about 
testing, best shown by a certificate.

Thank you We want to thank the colleagues from the German Testing Board and 
the ISTQB. Without their interest and work, the Certified Tester training 
scheme would not have received the success and acceptance described 
above.

1. [Bath 2013]



 Preface vii
What has been changedWhy a new edition of this book? This edition contains corrections of 
faults and clarification of ambiguity, as far as we know them. A special 
thank you to the readers who have described faults and have asked us 
about the instances of ambiguity. Furthermore, the terminology has been 
made more consistent with the improved ISTQB-glossary. This edition of 
the book is consistent with the syllabus version 2011. The literature list 
was updated and new books and standards were included. The links to 
Internet pages were checked and updated. We wish all readers good luck 
when using the described testing approaches and techniques in practice 
and—when reading the book is part of the preparation for the Certified 
Tester examination—good luck with the exam.

Andreas Spillner and Tilo Linz
Bremen, Möhrendorf, Germany
August 2013

I want to especially thank Michael Barabas from dpunkt.verlag, the pub-
lisher of the German book, and Matthias Rossmanith from Rocky Nook 
for their support in preparing this book. There were a lot of late changes 
and delays, most of which can be attributed to me. My special thanks goes 
to Judy Flynn, copy editor at Rocky Nook. Without her help, this book 
would be much harder to read. She helped me to improve my English, 
without getting tired of my systematic errors. When translating the 
German book to English, I especially thought of readers who do not use 
English as their native language. Many of us use a different language in our 
life, but English for our business. I hope the book will be comprehensible 
to such readers.

I included some planned changes to the ISTQB syllabus. These are 
specially marked because they will not be included in exams before 2015. 
Most of them are obvious changes due to development in international 
standards. When taking the Certified Tester exam, please make sure you 
know which version of the syllabus is used in your exam!

Finally, the main goal for this book is that it should teach you how to 
test effectively and efficiently. You should learn that there is a lot more to 
learn in the area of testing. As a side effect, you should be prepared to pass 
the Certified Tester exam.

Hans Schaefer
Valestrandsfossen, Norway
February 2014
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1 Introduction 1
1 Introduction

In recent years, software been introduced virtually everywhere. There will 
soon be no appliances, machines, or facilities for which control is not 
implemented by software or software parts. In automobiles, for example, 
microprocessors and their accompanying software control more and more 
functionality, from engine management to the transmission and brakes. 
Thus, software is crucial to the correct functioning of devices and industry. 
Likewise, the smooth operation of an enterprise or organization depends 
largely on the reliability of the software systems used for supporting the 
business processes and particular tasks. How fast an insurance company 
can introduce a new product, or even a new rate, most likely depends on 
how quickly the IT systems can be adjusted or extended.

High dependence on the 

correct functioning of the 

software

Within both embedded and commercial software systems, quality has 
become the most important factor in determining success.

Many enterprises have recognized this dependence on software and 
strive for improved quality of their software systems and software engi-
neering (or development) processes. One way to achieve this goal is 
through systematic evaluation and testing of the software. In some cases, 
appropriate testing procedures have found their way into the daily tasks 
associated with software development. However, in many sectors, there 
remains a significant need to learn about evaluation and testing. 

Basic knowledge for 

structured evaluation and 

testing

With this book, we offer basic knowledge that will help you achieve 
structured and systematic evaluation and testing. Implementation of these 
evaluation and testing procedures should contribute to improvement of 
the quality of software. This book does not presume previous knowledge 
of software quality assurance. It is designed as a textbook and can even be 
used as a guide for self-study. We have included a single, continuous 
example to help provide an explanation and practical solutions for all of 
the topics we cover.
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We want to help software testers who strive for a well-founded, basic 
knowledge of the principles behind software testing. We also address pro-
grammers and developers who are already performing testing tasks or will 
do so in the future. The book will help project managers and team leaders 
to improve the effectiveness and efficiency of software tests. Even those in 
disciplines related to IT, as well as employees who are involved in the pro-
cesses of acceptance, introduction, and further development of IT applica-
tions, will find this book helpful for their daily tasks.

Evaluation and testing procedures are costly in practice (this area is 
estimated to consume 25% to 50% of software development time and cost 
[Koomen 99]). Yet, there are still too few universities, colleges, and voca-
tional schools in the sectors of computer and information science that 
offer courses about this topic. This book will help both students and teach-
ers. It provides the material for an introduction-level course.

Lifelong learning is indispensable, especially in the IT industry. Many 
companies and trainers offer further education in software testing to their 
employees. General recognition of a course certificate is possible, however, 
only if the contents of the course and the examination are defined and fol-
lowed up by an independent body.

Certification program for 

software testers

In 1997, the Information Systems Examinations Board (ISEB) [URL: 
ISEB] of the British Computer Society (BCS) [URL: BCS] started a certifi-
cation scheme to define course objectives for an examination (see the fore-
word by Dorothy Graham).

International initiative Similar to the British example, other countries took up these activities 
and established independent, country-specific testing boards to make it 
possible to offer training and exams in the language of the respective 
countries. These national boards cooperate in the International Software 
Testing Qualifications Board (ISTQB) [URL: ISTQB]. An updated list of 
all ISTQB members can be found at [URL: ISTQB Members].

The ISTQB coordinates the national initiatives and assures uniformity 
and comparability of the courses and exam contents among the countries 
involved.

The national testing boards are responsible for issuing and maintain-
ing curricula in the language of their countries and for organizing and exe-
cuting examinations in their countries. They assess the seminars offered in 
their countries according to defined criteria and accredit training provid-
ers. The testing boards thus guarantee a high quality standard for the sem-
inars. After passing an exam, the seminar participants receive an interna-
tionally recognized certificate of qualification.
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Three-step qualification 

scheme

The ISTQB Certified Tester qualification scheme has three steps. The 
basics are described in the Foundation Level curriculum (syllabus). Build-
ing on this is the Advanced Level certificate, showing a deeper knowledge 
of testing and evaluation. The third level, the Expert Level, is intended for 
experienced professional software testers and consists of several modules 
about different special topics. Currently, the first four syllabi are being pre-
pared in the ISTQB and the national boards. The syllabi for “Improving 
The Test Process” and “Test Management” are available. Syllabi for “Test 
Automation” and “Security Testing” are on their way. The current status of 
the syllabi can be seen at [URL: ISTQB].

The contents of this book correspond to the requirements of the 
ISTQB Foundation Level certificate. The knowledge needed to pass the 
exams can be acquired by self-study. The book can also be used to attain 
knowledge after, or parallel to, participation in a course.

The overall structure of this book corresponds to the course contents 
for the Foundation Level certificate.

FoundationsIn chapter 2, “Fundamentals of Testing,” the basics of software testing 
are discussed. In addition to the motivation for testing, the chapter will 
explain when to test, with which goals, and how intensively. The concept 
of a basic test process is described. The chapter shows the psychological 
difficulties experienced when testing one’s own software and the problems 
that can occur when trying to find one’s own errors.

Testing in the software life 

cycle

Chapter 3, “Testing in the Software Life Cycle,” discusses which test 
activities should be performed during the software development process 
and when. In addition to describing the different test levels, it will examine 
the difference between functional and nonfunctional tests. Regression 
testing is also discussed.

Static testingChapter 4, “Static Test,” discusses static testing techniques, that is, 
ways in which the test object is analyzed but not executed. Reviews and 
static analyses are already applied by many enterprises with positive 
results. This chapter will describe in detail the various methods and tech-
niques.

Dynamic testingChapter 5, “Dynamic Analysis – Test Design Techniques,” deals with 
testing in a narrower sense. The classification of dynamic testing tech-
niques into black box and white box techniques will be discussed.

Each kind of test technique is explained in detail with the help of a 
continuous example. The end of the chapter shows the reasonable usage of 
exploratory and intuitive testing, which may be used in addition to the 
other techniques.
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Test management Chapter 6, “Test Management,” discusses aspects of test management 
such as systematic incident handling, configuration management, and 
testing economy.

Testing tools Chapter 7, “Test Tools,” explains the different classes of tools that can 
be used to support testing. The chapter will include introductions to some 
of the tools and suggestions for selecting the right tools for your situation.

The appendices include 

additional information on the 

topics covered and for the 

exam.

Appendix A contains explanations of the test plan according to IEEE 
Standard 829-1998 [IEEE 829] and 829-2008. Appendix B includes impor-
tant notes and additional information on the Certified Tester exam, and 
appendix C offers exercises to reinforce your understanding of the topics 
in each chapter. Finally, there is a glossary and a bibliography. Technical 
terms that appear in the glossary are marked with an arrow [➞] when they 
appear for the first time in the text. Text passages that go beyond the mate-
rial of the syllabus are marked as “excursions.”



2 Fundamentals of Testing 5
2 Fundamentals of Testing

This introductory chapter will explain basic facts of software testing, covering 
what you will need to know to understand the following chapters. Important 
concepts and essential vocabulary will be explained by using an example 
application that will be used throughout the book. It appears frequently to 
illustrate and clarify the subject matter. The fundamental test process with 
the different testing activities will be illustrated. Psychological problems with 
testing will be discussed. Finally, the ISTQB Code of Tester Ethics is presented 
and discussed.

Throughout this book, we’ll use one example application to illustrate the 
software test methods and techniques presented in this book. The funda-
mental scenario is as follows.

Case study, 
“VirtualShowRoom” – VSR

A car manufacturer develops a new electronic sales support system called 
VirtualShowRoom (VSR). The final version of this software system will be in-
stalled at every car dealer worldwide. Customers who are interested in purchasing 
a new car will be able to configure their favorite model (model, type, color, extras, 
etc.), with or without the guidance of a salesperson.

The system shows possible models and combinations of extra equipment and 
instantly calculates the price of the car the customer configures. A subsystem 
called DreamCar will provide this functionality.

When the customer has made up her mind, she will be able to calculate the 
most suitable financing (EasyFinance) as well as place the order online (JustIn-
Time). She will even get the option to sign up for the appropriate insurance 
(NoRisk). Personal information and contract data about the customer is managed 
by the ContractBase subsystem.

Figure 2-1 shows the general architecture of this software system. 
Every subsystem will be designed and developed by a separate development 

team. Altogether, about 50 developers and additional employees from the respec-
tive user departments are involved in working on this project. External software 
companies will also participate.
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The VSR-System must be tested thoroughly before release. The project mem-
bers assigned to test the software apply different testing techniques and methods. 
This book contains the basic knowledge necessary for applying them.

VirtualShowRoom (VSR)

EasyFinanceJust InTime NoRisk

DreamCar

Host

ContractBase

3

2 2 2

1

1 Exchange of car data
2 Exchange of contract data

3 Exchange of order data

 

Figure 2–1
Architecture 

 of the VSR-System 

2.1 Terms and Motivation
Requirements During the construction of an industry product, the parts and the final 

product are usually examined to make sure they fulfill the given 
➞requirements, that is, whether the product solves the required task.

Depending on the product, there may be different requirements to 
the ➞quality of the solution. If the product has problems, corrections 
must be made in the production process and/or in the design of the 
product itself.

Software is immaterial What generally counts for the production of industry products is also 
appropriate for the production or development of software. However, test-
ing (or evaluation) of partial products and the final product is more diffi-
cult, because a software product is not a tangible physical product. Direct 
examination is not possible. The only way to examine the product is by 
reading (reviewing) the development documents and code.

The dynamic behavior of the software, however, cannot be checked 
this way. It must be done through ➞testing, by executing the software on 
a computer. Its behavior must be compared to the requirements. Thus, 
testing of software is an important and difficult task in software develop-
ment. It contributes to reducing the ➞risk of using the software 
because ➞defects can be found in testing. Testing and test documentation 
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are often defined in contracts, laws, or industrial or organizational stand-
ards.
[Horizontal line, start example, example font]

ExampleTo identify and repair possible faults before delivery, the VSR-System from the
case study example must be tested intensively before it is used. For example, if the 
system executes order transactions incorrectly, this could result in frustration for 
the customer and serious financial loss and a negative impact on the image of the 
dealer and the car manufacturer. Not finding such a defect constitutes a high risk 
during system use.

2.1.1 Error, Defect, and Bug Terminology

What is a defect, 
failure, or fault?

When does a system behave incorrectly, not conforming to requirements? 
A situation can be classified as incorrect only after we know what the cor-
rect situation is supposed to look like. Thus, a ➞failure means that a given 
requirement is not fulfilled; it is a discrepancy between the ➞actual result 
or behavior1 and the ➞expected result or behavior.2 

A failure is present if a legitimate (user) expectation is not adequately 
met. An example of a failure is a product that is too difficult to use or too 
slow but still fulfills the ➞functional requirements.

In contrast to physical system failure, software failures do not occur 
because of aging or abrasion. They occur because of ➞faults in the soft-
ware. Faults (or defects or ➞bugs) in software are present from the time 
the software was developed or changed yet materialize only when the soft-
ware is executed, becoming visible as a failure.

FailureTo describe the event when a user experiences a problem, [IEEE
610.12] uses the term failure. However, other terms, like problem, issue, 
and incident, are often used. During testing or use of the software, the fail-
ure becomes visible to the ➞tester or user; for example, an output is wrong 
or the program crashes.

FaultWe have to distinguish between the occurrence of a failure and its 
cause. A failure is caused by a fault in the software. This fault is also called 
a defect or internal error. Programmer slang for a fault is bug. For example, 
faults can be incorrect or forgotten ➞statements in the program.

Defect maskingIt is possible that a fault is hidden by one or more other faults in other 
parts of the program (➞defect masking). In that case, a failure occurs only 

1. The actual behavior is identified while executing the test or during use of the system.
2. The expected behavior is defined in the specifications or requirements.
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after the masking defects have been corrected. This demonstrates that cor-
rections can have side effects.

One problem is that a fault can cause none, one, or many failures for 
any number of users and that the fault and the corresponding failure are 
arbitrarily far away from each other. A particularly dangerous example is 
some small corruption of stored data, which may be found a long time 
after it first occurred.

Error or mistake The cause of a fault or defect is an ➞error or ➞mistake by a person—
for example, defective programming by the developer. However, faults 
may even be caused by environmental conditions, like radiation and mag-
netism, that introduce hardware problems. Such problems are, however, 
not discussed in this book.

People err, especially under time pressure. Defects may occur, for 
example, by bad programming or incorrect use of program statements. 
Forgetting to implement a requirement leads to defective software. 
Another cause is changing a program part because it is complex and the 
programmer does not understand all consequences of the change. 
Infrastructure complexity, or the sheer number of system interactions, 
may be another cause. Using new technology often leads to defects in soft-
ware, because the technology is not fully understood and thus not used 
correctly.

More detailed descriptions of the terms used in testing are given in the 
following section.

2.1.2 Testing Terms

Testing is not debugging To be able to correct a defect or bug, it must be localized in the software. 
Initially, we know the effect of a defect but not the precise location in the 
software. Localization and correction of defects are tasks for a software 
developer and are often called ➞debugging. Repairing a defect generally 
increases the ➞quality of the product because the ➞change in most cases 
does not introduce new defects. 

However, in practice, correcting defects often introduces one or more 
new defects. The new defects may then introduce failures for new, totally 
different inputs. Such unwanted side effects make testing more difficult. 
The result is that not only must we repeat the ➞test cases that have 
detected the defect, we must also conduct even more test cases to detect 
possible side effects.
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Debugging is often equated with testing, but they are entirely different 
activities.

Debugging is the task of localizing and correcting faults. The goal of 
testing is the (more or less systematic) detection of failures (that indicate 
the presence of defects).

A test is a sample 

examination

Every execution3 (even using more or less random samples) of a ➞test 
object in order to examine it is testing. The ➞test conditions must be 
defined. Comparing the actual and expected behaviors of the test object 
serves to determine if the test object fulfills the required characteristics.4

Testing software has different purposes:
■ Executing a program to find failures
■ Executing a program to measure quality
■ Executing a program to provide confidence5

■ Analyzing a program or its documentation to prevent failures

Tests can also be performed to acquire information about the test object, 
which is then used as the basis for decision-making—for example, about 
whether one part of a system is appropriate for integration with other parts 
of the system. The whole process of systematically executing programs to
demonstrate the correct implementation of the requirements, to increase
confidence, and to detect failures is called testing. In addition, a test 
includes static methods, that is, static analysis of software products using 
tools as well as document reviews (see chapter 4).

Testing termsBesides execution of the test object with ➞test data, planning, design, 
implementation, and analysis of the test (➞test management) also belong 
to the ➞test process. A ➞test run or ➞test suite includes execution of one 
or more ➞test cases. A test case contains defined test conditions. In most 
cases, these are the preconditions for execution, the inputs, and the 
expected outputs or the expected behavior of the test object. A test case 
should have a high probability of revealing previously unknown faults 
[Myers 79].

Several test cases can often be combined to create ➞test scenarios, 
whereby the result of one test case is used as the starting point for the next 

3. This relates to dynamic testing (see chapter 5). In static testing (see chapter 4), the test 
object is not executed.

4. It is not possible to prove correct implementation of the requirements. We can only 
reduce the risk of serious bugs remaining in the program by testing.

5. If a thorough test finds few or no failures, confidence in the product will increase.
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test case. For example, a test scenario for a database application can con-
tain one test case writing a date into the database, another test case chang-
ing that date, and a third test case reading the changed date from the data-
base and deleting it. (By deleting the date, the database should be in the 
same state as before executing this scenario.) Then all three test cases will 
be executed, one after another, all in a row.

No large software system 

is bug free

At present, there is no known bug-free software system, and there will 
probably not be any in the near future (if a system has nontrivial complex-
ity). Often the reason for a fault is that certain exceptional cases were not 
considered during development and testing of the software. Such faults 
could be the incorrectly calculated leap year or the not-considered bound-
ary condition for time behavior or needed resources. On the other hand, 
there are many software systems in many different fields that operate reli-
ably, 24/7.

Testing cannot produce 

absence of defects

Even if all the executed test cases do not show any further failures, we 
cannot safely conclude (except for very small programs) that there are no 
further faults or that no further test cases could find them.

Excursion: 
Naming tests

There are many confusing terms for different kinds of software tests. Some will be 
explained later in connection with the description of the different ➞test levels (see 
chapter 3). The following terms describe the different ways tests are named:

➞Test objective or test type: 
A test is named according to its purpose (for example, ➞load test).

➞Test technique:
A test is named according to the technique used for specifying or executing the test 
(for example, ➞business-process-based test).

Test object:
The name of a test reflects the kind of the test object to be tested (for example, a GUI 
test or DB test [database test]).

Test level:
A test is named after the level of the underlying life cycle model (for example, 
➞system test).

Test person:
A test is named after the personnel group executing the tests (for example, developer 
test, ➞user acceptance test).

Test extent:
A test is named after the level of extent (for example, partial ➞regression test, full 
test).

Thus, not every term means a new or different kind of testing. In fact, only one of the 
aspects is pushed to the fore. It depends on the perspective we use when we look at 
the actual test.
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2.1.3 Software Quality

Software testing contributes to improvement of ➞software quality. This is 
done by identifying defects and subsequently correcting them. If the test 
cases are a reasonable sample of software use, quality experienced by the 
user should not be too different from quality experienced during testing.

But software quality is more than just the elimination of failures found 
during testing. According to the ISO/IEC Standard 9126-1 [ISO 9126], 
software quality comprises the following factors:

➞functionality, ➞reliability, usability, ➞efficiency, ➞maintainability, 
and portability.

Testing must consider all these factors, also called ➞quality character-
istics and ➞quality attributes, in order to judge the overall quality of a 
software product. Which quality level the test object is supposed to show 
for each characteristic should be defined in advance. Appropriate tests 
must then check to make sure these requirements are fulfilled.

Excursion: 
ISO/IEC 25010

In 2011 ISO/IEC Standard 9126 was replaced by ISO/IEC Standard 25010 [ISO 
25010]. The current ISTQB syllabus still refers to ISO/IEC 9126. Here is a short over-
view of the new standard.

ISO/IEC 25010 partitions software quality into three models: quality in use model, 
product quality model, and data quality model. The quality in use model comprises 
the following characteristics: effectiveness, satisfaction, freedom from risk, and con-
text coverage. The product quality model comprises functional sustainability, perfor-
mance efficiency, compatibility, usability, reliability, security, maintainability, and port-
ability. In this area much is like in ISO/IEC 9126. Data quality is defined in ISO/IEC 
25012 [ISO 25012].

Example 
VirtualShowRoom

In the case of the VSR-System, the customer must define which of the quality char-
acteristics are important. Those must be implemented in the system and then 
checked for. The characteristics of functionality, reliability, and usability are very 
important for the car manufacturer. The system must reliably provide the required 
functionality. Beyond that, it must be easy to use so that the different car dealers 
can use it without any problems in everyday life. These quality characteristics 
should be especially well tested in the product.

We discuss the individual quality characteristics of ISO/IEC Standard
9126-1 [ISO 9126] in the following section.

FunctionalityWhen we talk about functionality, we are referring to all of the 
required capabilities of a system. The capabilities are usually described by 
a specific input/output behavior and/or an appropriate reaction to an 
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input. The goal of the test is to prove that every single required capability 
in the system was implemented as described in the specifications. Accord-
ing to ISO/IEC Standard 9126-1, the functionality characteristic contains 
the subcharacteristics adequacy, accuracy, interoperability, correctness,
and security.

An appropriate solution is achieved if every required capability is 
implemented in the system. Thereby it is clearly important to pay atten-
tion to, and thus to examine during testing, whether the system delivers 
the correct or specified outputs or effects.

Software systems must interoperate with other systems, at least with 
the operating system (unless the operating system is the test object itself).

Interoperability describes the cooperation between the system to be 
tested and other specified systems. Testing should detect trouble with this 
cooperation.

Adequate functionality also requires fulfilling usage-specific stand-
ards, contracts, rules, laws, and so on. Security aspects such as access con-
trol and ➞data security are important for many applications. Testing must 
show that intentional and unintentional unauthorized access to programs 
and data is prevented.

Reliability Reliability describes the ability of a system to keep functioning under 
specific use over a specific period. In the standard, the reliability charac-
teristic is split into maturity, ➞fault tolerance, and recoverability.

Maturity means how often a failure of the software occurs as a result 
of defects in the software.

Fault tolerance is the capability of the software product to maintain a 
specified level of performance or to recover from faults such as software 
faults, environment failures, wrong use of interface, or incorrect input.

Recoverability is the capability of the software product to reestablish a 
specified level of performance (fast and easily) and recover the data 
directly affected in case of failure. Recoverability describes the length of 
time it takes to recover, the ease of recovery, and the amount of work 
required to recover. All this should be part of the test.

Usability Usability is very important for acceptance of interactive software sys-
tems. Users won’t accept a system that is hard to use. What is the effort 
required for the usage of the software for different user groups? Under-
standability, ease of learning, operability, and attractiveness as well as 
compliance to standards, conventions, style guides, and user interface reg-
ulations are aspects of usability. These quality characteristics are checked 
in ➞nonfunctional tests (see chapter 3).
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EfficiencyEfficiency tests may give measurable results. An efficiency test meas-
ures the required time and consumption of resources for the execution of 
tasks. Resources may include other software products, the software and 
hardware ➞configuration of the system, and materials (for example, print 
paper, network, and storage).

Maintainability and 

portability

Software systems are often used over a long period on various plat-
forms (operating system and hardware). Therefore, the last two quality 
criteria are very important: maintainability and portability.

Subcharacteristics of maintainability are analyzability, changeability, 
stability, and testability.

Subcharacteristics of portability are adaptability, ease of installation, 
conformity, and interchangeability. Many aspects of maintainability and 
portability can only be examined by ➞static analysis (see section 4.2).

A software system cannot fulfill every quality characteristic equally 
well. Sometimes it is possible that meeting one characteristic results in a 
conflict with another one. For example, a highly efficient software system 
can become hard to port because the developers usually use special char-
acteristics (or features) of the chosen platform to improve efficiency. This 
in turn negatively affects portability.

Prioritize quality 

characteristics

Quality characteristics must therefore be prioritized. The quality spec-
ification is used to determine the test intensity for the different quality 
characteristics. The next chapter will discuss the amount of work involved 
in these tests.

2.1.4 Test Effort

Complete testing 

is impossible

Testing cannot prove the absence of faults. In order to do this, a test would 
need to execute a program in every possible situation with every possible 
input value and with all possible conditions. In practice, a ➞complete or 
exhaustive test is not feasible. Due to combinational effects, the outcome 
of this is an almost infinite number of tests. Such a “testing” for all combi-
nations is not possible.

ExampleThe fact that complete testing is impossible is illustrated by an example of 
➞control flow testing [Myers 79].

A small program with an easy control flow will be tested. The program con-
sists of four decisions (IF-instructions) that are partially nested. The control flow 
graph of the program is shown in figure 2-2. Between Point A and B is a loop, 
with a return from Point B to Point A. If the program is supposed to be exhaus-
tively tested for the different control-flow-based possibilities, every possible 
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flow—i.e., every possible combination of program parts—must be executed. At a 
loop limit of a maximum of 20 cycles and considering that all links are independ-
ent, the outcome is the following calculation, whereby 5 is the number of possible 
ways within the loop:

520 + 519 + 518 + … + 51

51 test cases result from execution of every single possible way within the loop, 
but in each case without return to the loop starting point. If the test cases result 
in one single return to the loop starting point, then 5 × 5 = 52 different possibili-
ties must be considered, and so on. The total result of this calculation is about 
100 quadrillion different sequences of the program.

A

B

 

Figure 2–2
Control flow graph 
of a small program 

Assuming that the test is done manually and a test case, as Myers describes 
[Myers 79], takes five minutes to specify, to execute, and to be analyzed, the time 
for this test would be one billion years. If we assume five microseconds instead of 
five minutes per test case, because the test mainly runs automatically, it would still 
last 19 years.

Test effort between 

 25% and 50%

Thus, in practice it is not possible to test even a small program exhaus-
tively.

It is only possible to consider a part of all imaginable test cases. But 
even so, testing still accounts for a large portion of the development effort. 
However, a generalization of the extent of the ➞test effort is difficult 
because it depends very much on the character of the project. The follow-
ing list shows some example data from projects of one large German soft-
ware company. This should shed light on the spectrum of different testing 
efforts relative to the total budget of the development.
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■ For some major projects with more than 10 person-years’ effort, coding 
and testing together used 40%, and a further 8% was used for the inte-
gration. At test-intensive projects (for example, ➞safety-critical sys-
tems), the testing effort increased to as much as 80% of the total budget.

■ In one project, the testing effort was 1.2 times as high as the coding 
effort, with two-thirds of the test effort used for ➞component testing.

■ For another project at the same software development company, the 
system test cost was 51.9% of the project.

Test effort is often shown as the proportion between the number of testers 
and the number of developers. The proportion varies from 1 tester per 
10 developers to up to 3 testers per developer. The conclusion is that test 
efforts or the budget spent for testing vary enormously.

Defects can cause high costsBut is this high testing effort affordable and justifiable? The counter 
question from Jerry Weinberg is “Compared to what?” [DeMarco 93]. His 
question refers to the risks of faulty software systems. Risk is calculated as 
the probability of occurrence and the expected amount of damage.

Faults that were not found during testing can cause high costs when 
the software is used. The German newspaper Frankfurter Allgemeine Zei-
tung from January 17, 2002, had an article titled “IT system breakdowns 
cost many millions.” A one-hour system breakdown in the stock exchange 
is estimated to cost $7.8 million. When safety-critical systems fail, the lives 
and health of people may be in danger.

Since a full test is not possible, the testing effort must have an appro-
priate relation to the attainable result. “Testing should continue as long as 
costs of finding and correcting a defect6 are lower than the costs of failure” 
[Koomen 99]. Thus, the test effort is always dependent on an estimation of 
the application risk.

Example for a high risk 
in case of failure

In the case of the VSR-System, the prospective customers configure their favorite 
car model on the display. If the system calculates a wrong price, the customer can 
insist on that price. In a later stage of the VSR-System, the company plans to offer 
a web-based sales portal. In that case, a wrong price can lead to thousands of cars 
being sold for a price that’s too low. The total loss can amount to millions, depend-
ing on how much the price was miscalculated by the VSR-System. The legal view 
is that an online order is a valid sales contract with the quoted price.

6. The cost must include all aspects of a failure, even the possible cost of bad publicity, 
litigation, etc., and not just the cost of correction, retesting, and distribution.
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Systems with high risks must be tested more thoroughly than systems that 
do not generate big losses if they fail. The risk assessment must be done for 
the individual system parts, or even for single error possibilities. If there is 
a high risk for failures by a system or subsystem, there must be a greater 
testing effort than for less critical (sub)systems. International standards for 
production of safety-critical systems use this approach to require that dif-
ferent test techniques be applied for software of different integrity levels.

For a producer of a computer game, saving erroneous game scores can 
mean a very high risk, even if no real damage is done, because the custom-
ers will not trust a defective game. This leads to high losses of sales, maybe 
even for all games produced by the company.

Define test intensity and test 

extent depending on risk

Thus, for every software program it must be decided how intensively 
and thoroughly it shall be tested. This decision must be made based upon 
the expected risk of failure of the program. Since a complete test is not 
possible, it is important how the limited test resources are used. To get a 
satisfying result, the tests must be designed and executed in a structured 
and systematic way. Only then is it possible to find many failures with 
appropriate effort and avoid ➞unnecessary tests that would not give more 
information about system quality.

Select adequate test 

techniques

There exist many different methods and techniques for testing 
software.

Every technique especially focuses on and checks particular aspects of 
the test object. Thus, the focus of examination for the control-flow-based 
test techniques is the program flow. In case of the ➞data flow test tech-
niques, the examination focuses on the use and flow of data. Every test 
technique has its strengths and weaknesses in finding different kinds of 
faults. There is no test technique that is equally well suited for all aspects. 
Therefore, a combination of different test techniques is always necessary 
to detect failures with different causes.

Test of extra functionality During the test execution phase, the test object is checked to deter-
mine if it works as required by the ➞specifications. It is also important—
and thus naturally examined while testing—that the test object does not 
execute functions that go beyond the requirements. The product should 
provide only the required functionality.

Test case explosion The testing effort can grow very large. Test managers face the dilemma 
of possible test cases and test case variants quickly becoming hundreds or 
thousands of tests. This problem is also called combinatorial explosion, or 
➞test case explosion. Besides the necessary restriction in the number of 



2.2 The Fundamental Test Process 17
test cases, the test manager normally has to fight with another problem: 
lack of resources.

Limited resourcesParticipants in every software development project will sooner or later 
experience a fight about resources. The complexity of the development 
task is underestimated, the development team is delayed, the customer 
pushes for an earlier release, or the project leader wants to deliver “some-
thing” as soon as possible. The test manager usually has the worst position 
in this “game.” Often there is only a small time window just before delivery 
for executing the test cases and very few testers are available to run the 
test. It is certain that the test manager does not have the time and 
resources for executing an “astronomical” amount of test cases.

However, it is expected that the test manager delivers trustworthy 
results and makes sure the software is sufficiently tested. Only if the test 
manager has a well-planned, efficient strategy is there is a chance to fulfill 
this challenge successfully. A fundamental test process is required. Besides 
the adherence to a fundamental test process, further ➞quality assurance 
activities must be accomplished, such as, for example, ➞reviews (see sec-
tion 4.1.2). Additionally, a test manager should learn from earlier projects 
and improve the development and testing process.

The next section describes a fundamental test process typically used 
for the development and testing of systems like the VSR-System.

2.2 The Fundamental Test Process

Excursion 
Life cycle models

To accomplish a structured and controllable software development effort, software 
development models and ➞development processes are used. Many different 
models exist. Examples are the waterfall model [Boehm 73], [Boehm 81], the gen-
eral V-model7 [Boehm 79], and the German V-model XT [URL: V-model XT]). Fur-
thermore, there are the spiral model, different incremental or evolutionary models, 
and the agile, or lightweight, methods like XP (Extreme Programming [Beck 00]) and 
SCRUM [Beedle 01], which are popular nowadays (for example, see [Bleek 08]). 
Development of object-oriented software systems often uses the rational unified 
process [Jacobson 99].

All of these models define a systematic, orderly way of working during the project. 
In most cases, phases or design steps are defined. They have to be completed with 
a result in the form of a document. A phase completion, often called a ➞milestone, 
is achieved when the required documents are completed and conform to the given 
quality criteria. Usually, ➞roles dedicated to specific tasks in software development 

7. The general V-model will be referred to as the general model to make sure it is not con-
fused with the German V-model, referred to as just V-model.
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are defined. Project staff has to accomplish these tasks. Sometimes, the models even 
define the techniques and processes to be used in a particular phase. With the aid of 
these models, detailed planning of resource usage (time, personnel, infrastructure, 
etc.) can be performed. In a project, the development models define the collective and 
mandatory tasks and their chronological sequence.

Testing appears in each of these life cycle models, but with very different mean-
ings and to a different extent. In the following, some models will be briefly discussed 
from the view of testing.

The waterfall model: 
Testing as “final inspection”

The first fundamental model was the waterfall model (see figure 2-3, shown with 
the originally defined phases [Royce 70]8). It is impressively simple and very well 
known. Only when one development phase is completed will the next one be initiated.

Between adjacent phases only, there are feedback loops that allow, if necessary, 
required revisions in the previous phase. The crucial disadvantage of this model is 
that testing is understood as a “one time” action at the end of the project just before 
the release to operation. The test is seen as a “final inspection,” an analogy to a man-
ufacturing inspection before handing over the product to the customer.

The general V-model An enhancement of the waterfall model is the general V-model ([Boehm 79], 
[IEEE/IEC 12207]), where the constructive activities are decomposed from the test-
ing activities (see chapter 3, figure 3-1). The model has the form of a V. The construc-
tive activities, from requirements definition to implementation, are found on the down-
ward branch of the V. The test execution activities on the ascending branch are 
organized by test levels and matched to the appropriate abstraction level on the 
opposite side’s constructive activity. The general V-model is common and frequently 
used in practice.

System
Requirements

Software
Requirements

Analysis

Design

Coding

Test

Use

Figure 2–3
Waterfall-model

8. Royce did not call his model a waterfall model. He said in his paper, “Unfortunately, for 
the process illustrated, the design iterations are never confined to the successive steps.”
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The description of tasks in the process models discussed previously is not 
sufficient as an instruction on how to perform structured tests in software 
projects. In addition to embedding testing in the whole development pro-
cess, a more detailed process for the testing tasks themselves is needed (see 
figure 2-4). This means that the “content” of the development task testing 
must be split into smaller subtasks, as follows: ➞test planning and control, 
test analysis and design, test implementation and execution, evaluation of 
test ➞exit criteria and reporting, and test closure activities. Although illus-
trated sequentially, the activities in the test process may overlap or take 
place concurrently. Test activities also need to be adjusted to the individual 
needs of each project. The test process described here is a generic one. The 
listed subtasks form a fundamental test process and are described in more 
detail in the following sections.

Planning and

Analysis and Design

Implementation and
Execution

Evaluation of Exit
Criteria and Reporting

Test Closure Activities

Control

Begin

End

 

Figure 2–4
ISTQB fundamental test 
process

2.2.1 Test Planning and Control

Execution of such a substantial task as testing must not take place without 
a plan. Planning of the test process starts at the beginning of the software 
development project. As with all planning, during the course of the project 
the previous plans must be regularly checked, updated, and adjusted.

Resource planningThe mission and objectives of testing must be defined and agreed 
upon as well as the resources necessary for the test process. Which
employees are needed for the execution of which tasks and when? How
much time is needed, and which equipment and utilities must be availa-
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ble? These questions and many more must be answered during planning, 
and the result should be documented in the ➞test plan (see chapter 6). 
Necessary training programs for the employees should be prepared. An 
organizational structure with the appropriate test management must be 
arranged or adjusted if necessary.

Test control is the monitoring of the test activities and comparing 
what actually happens during the project with the plan. It includes report-
ing the status of deviations from the plan and taking any actions necessary 
to meet the planned goals in the new situation. The test plan must be 
updated to the changed situation. 

Part of the test management tasks is administrating and maintaining 
the test process, the ➞test infrastructure, and the ➞testware. Progress 
tracking can be based on appropriate reporting from the employees as well 
as data automatically generated from tools. Agreements about these topics 
must be made early.

Determination of the 

test strategy

The main task of planning is to determine the ➞test strategy or 
approach (see section 6.4). Since an exhaustive test is not possible, priori-
ties must be set based on risk assessment. The test activities must be dis-
tributed to the individual subsystems, depending on the expected risk and 
the severity of failure effects. Critical subsystems must get greater atten-
tion, thus be tested more intensively. For less critical subsystems, less 
extensive testing may be sufficient. If no negative effects are expected in 
the event of a failure, testing could even be skipped on some parts. How-
ever, this decision must be made with great care. The goal of the test strat-
egy is the optimal distribution of the tests to the “right” parts of the soft-
ware system.

Example for a test strategy The VSR-System consists of the following subsystems:

■ DreamCar allows the individual configuration of a car and its extra equipment.
■ ContractBase manages all customer information and contract data.
■ JustInTime implements the ability to place online orders (within the first expan-

sion stage by the dealer).
■ EasyFinance calculates an optimal method of financing for the customer.
■ NoRisk provides the ability to purchase appropriate insurance.

Naturally, the five subsystems should not be tested with identical intensity. The 
result of a discussion with the VSR-System client is that incorrect behavior of the 
DreamCar and ContractBase subsystems will have the most harmful effects. 
Because of this, the test strategy dictates that these two subsystems must be tested 
more intensively.
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The possibility to place orders online, provided by the subsystem JustInTime, 
is found to be less critical because the order can, in the worst case, still be passed 
on in other ways (via fax, for example). But it is important that the order data 
must not be altered or get lost in the JustInTime subsystem. Thus, this aspect 
should be tested more intensively.

For the other two subsystems, NoRisk and EasyFinance, the test strategy 
defines that all of their main functions (computing a rate, recording and placing 
contracts, saving and printing contracts, etc.) must be tested. Because of time 
constraints, it is not possible to cover all conceivable contract variants for financ-
ing and insuring a car. Thus, it is decided to concentrate the test around the most 
commonly occurring rate combinations. Combinations that occur less frequently 
get a lower priority (see sections 6.2 and 6.4). 

With these first thoughts about the test strategy for the VSR-System, it is clear 
that it is reasonable to choose the level of intensity for testing whole subsystems as 
well as single aspects of a system.

Define test intensity for 

subsystems and different 

aspects

The intensity of testing depends very much on the test techniques that are 
used and the ➞test coverage that must be achieved. Test coverage serves 
as a test exit criterion. Besides ➞coverage criteria referring to source code 
structure (for example, statement coverage; see section 5.2), it is possible 
to define meeting the customer requirements as an exit criterion. It may be 
demanded that all functions must be tested at least once or, for example, 
that at least 70% of the possible transactions in a system are executed. Of 
course, the risk in case of failure should be considered when the exit crite-
ria, and thus the intensity of the tests, are defined. Once all test exit criteria9

are defined, they may be used after executing the test cases to decide if the 
test process can be finished.

Prioritization of the testsBecause software projects are often run under severe time pressure, it
is reasonable to appropriately consider the time aspect during planning.
The prioritization of tests guarantees that the critical software parts are
tested first in case time constraints do not allow executing all the planned
tests (see section 6.2).

Tool supportIf the necessary tool support (see chapter 7) does not exist, selection 
and acquisition of tools must be initiated early. Existing tools must be eval-
uated if they are updated. If parts of the test infrastructure have to be 
developed, this can be prepared. ➞Test harnesses (or ➞test beds), where 
subsystems can be executed in isolation, must often be programmed. They 
must be created soon enough to be ready after the respective test objects 

9. Another term is test end criteria.
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are programmed. If frameworks—such as Junit [URL: xunit]—shall be 
applied, their usage should be announced early in the project and should 
be tried in advance.

2.2.2 Test Analysis and Design
Review the test basis The first task is to review the ➞test basis, i.e., the specification of what 

should be tested. The specification should be concrete and clear enough to 
develop test cases. The basis for the creation of a test can be the specifica-
tion or architecture documents, the results of risk analysis, or other docu-
ments produced during the software development process.

For example, a requirement may be too imprecise in defining the 
expected output or the expected behavior of the system. No test cases can 
then be developed. ➞Testability of this requirement is insufficient. There-
fore it must be reworked. Determining the ➞preconditions and require-
ments to test case design should be based on an analysis of the require-
ments, the expected behavior, and the structure of the test object.

Check testability As with analyzing the basis for a test, the test object itself also has to 
fulfill certain requirements to be simple to test. Testability has to be 
checked. This process includes checking the ease with which interfaces 
can be addressed (interface openness) and the ease with which the test 
object can be separated into smaller, more easily testable units. These 
issues need to be addressed during development and the test object should 
be designed and programmed accordingly. The results of this analysis are 
also used to state and prioritize the test conditions based on the general 
objectives of the test. The test conditions state exactly what shall be tested. 
This may be a function, a component, or some quality characteristic.

Consider the risk The test strategy determined in the test plan defines which test tech-
niques shall be used. The test strategy is dependent on requirements for 
reliability and safety. If there is a high risk of failure for the software, very 
thorough testing should be planned. If the software is less critical, testing 
may be less formal. 

In the ➞test specification, the test cases are then developed using the 
test techniques specified. Techniques planned previously are used, as well 
as techniques chosen based on an analysis of possible complexity in the 
test object.

Traceability is important It is important to ensure ➞traceability between the specifications to 
be tested and the tests themselves. It must be clear which test cases test 
which requirements and vice versa. Only this way is it possible to decide 
which requirements are to be or have been tested, how intensively and 
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with which test cases. Even the traceability of requirement changes to the 
test cases and vice versa should be verified.

Logical and concrete 
test cases

Specification of the test cases takes place in two steps. ➞Logical test 
cases have to be defined first. After that, the logical test cases can be trans-
lated into concrete, physical test cases, meaning the actual inputs are 
selected (➞concrete test cases). Also, the opposite sequence is possible: 
from concrete to the general logical test cases. This procedure must be 
used if a test object is specified insufficiently and test specification must be 
done in a rather experimental way (➞exploratory testing, see section 5.3). 
Development of physical test cases, however, is part of the next phase, test 
implementation.

The test basis guides the selection of logical test cases with all test 
techniques. The test cases can be determined from the test object’s specifi-
cation (➞black box test design techniques) or be created by analyzing the 
source code (➞white box test design techniques). It becomes clear that the 
activity called ➞test case specification can take place at totally different 
times during the software development process. This depends on the 
chosen test techniques, which are found in the test strategy. The process 
models shown at the beginning of section 2.2 represent the test execution 
phases only. Test planning, analysis, and design tasks can and should take 
place in parallel with earlier development activities.

Test cases comprise more 

than just the test data

For each test case, the initial situation (precondition) must be 
described. It must be clear which environmental conditions must be ful-
filled for the test. Furthermore, before ➞test execution, it must be defined 
which results and behaviors are expected. The results include outputs, 
changes to global (persistent) data and states, and any other consequences 
of the test case.

Test oracleTo define the expected results, the tester must obtain the information 
from some adequate source. In this context, this is often called an oracle, 
or ➞test oracle. A test oracle is a mechanism for predicting the expected 
results. The specification can serve as a test oracle. There are two main 
possibilities:

■ The tester derives the expected data based on the specification of the 
test object.

■ If functions doing the reverse action are available, they can be run after 
the test and then the result is verified against the original input. An 
example of this scenario is encryption and decryption of data. 
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See also chapter 5 for more information about predicting the expected 
results.

Test cases for expected and 

unexpected inputs

Test cases can be differentiated by two criteria:

■ First are test cases for examining the specified behavior, output, and 
reaction. Included here are test cases that examine specified handling 
of exception and error cases (➞negative test). But it is often difficult to 
create the necessary preconditions for the execution of these test cases 
(for example, capacity overload of a network connection).

■ Next are test cases for examining the reaction of test objects to invalid 
and unexpected inputs or conditions, which have no specified 
➞exception handling.

Example for test cases The following example is intended to clarify the difference between logical and 
concrete (physical) test cases.

Using the sales software, the car dealer is able to define discount rules for his 
salespeople: With a price of less than $15.000, no discount shall be given. For a 
price of $20.000, 5% is OK. If the price is below $25.000, a 7% discount is possi-
ble. For higher prices, 8.5% can be granted.

From this, the following cases can be derived:
Price < 15.000 discount = 0%
15.000  price  20.000 discount = 5%
20.000 < price < 25.000 discount = 7%
price  25.000 discount = 8.5%

It becomes obvious that the text has room for interpretation10, which may be mis-
understood. With more formal, mathematical description, this will not happen. 
However, the discounts are clearly stated. From the more formal statement 
(above), table 2-1 can be developed.

Logical test case 1 2 3 4

input value x 
(price in dollar)

x < 15000 15000 
x 

20000

20000 
< x <

25000

x
 

25000

predicted result 
(discount in %)

0 5 7 8.5

 

Table 2–1
Table with logical test cases

10. In the preceding paragraph, it is unclear what happens at exactly 25.000.
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To execute the test cases, the logical test cases must be converted into 
concrete test cases. Concrete inputs must be chosen (see table 2-2) Special 
preconditions or conditions are not given for these test cases

Concrete test case 1 2 3 4

input value x (price in dollar) 14500 16500 24750 31800

predicted result (discount in %) 0 825 1732.50 2703

. 

Table 2–2
Table with concrete test cases

The values chosen here shall only serve to illustrate the difference between logical 
and concrete test cases. No explicit test method has been used for designing them. 
We do not claim that the program is tested well enough with these four test cases. 
For example, there are no test cases for wrong inputs, such as, for example, nega-
tive prices. More detailed descriptions of methods for designing test cases are 
given in chapter 5.

In parallel to the described test case specification, it is important to decide 
on and prepare the test infrastructure and the necessary environment to 
execute the test object. To prevent delays during test execution, the test 
infrastructure should already be assembled, integrated, and verified as 
much as possible at this time.

2.2.3 Test Implementation and Execution

Here, logical test cases must be transformed into concrete test cases; all the 
details of the environment (test infrastructure and test framework) must 
be set up. The tests must be run and logged.

When the test process has advanced and there is more clarity about 
technical implementation, the logical test cases are converted into con-
crete ones. These test cases can then be used without further modifica-
tions or additions for executing the test, if the defined ➞preconditions for 
the respective test case are fulfilled. The mutual traceability between test 
cases and specifications must be checked and, if necessary, updated.

Test case executionIn addition to defining test cases, one must describe how the tests will 
be executed. The priority of the test cases (see section 6.2.3), decided 
during test planning, must be taken into account. If the test developer 
executes the tests himself, additional, detailed descriptions may not be 
necessary.

The test cases should also be grouped into ➞test suites or test scenar-
ios for efficient test execution and easier understanding.
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Test harness In many cases specific test harnesses, ➞drivers, ➞simulators, etc. 
must be programmed, built, acquired, or set up as part of the test environ-
ment before the test cases can be executed. Because failures may also be 
caused by faults in the test harness, the ➞test environment must be 
checked to make sure it’s working correctly.

When all preparatory tasks for the test have been accomplished, test 
execution can start immediately after programming and delivery of the 
subsystems to testing. Test execution may be done manually or with tools 
using the prepared sequences and scenarios.

Checking for completeness First, the parts to be tested are checked for completeness. The test 
object is installed in the available test environment and tested for its ability
to start and do the main processing.

Examination of the 

main functions

The recommendation is to start test execution with the examination of 
the test object’s main functionality (➞smoke test). If ➞failures or 
➞deviations from the expected result show up at this time, it is foolish to 
continue testing. The failures or deviations should be corrected first. After 
the test object passes this test, everything else is tested. Such a sequence 
should be defined in the test approach.

Tests without a log 

are of no value

Test execution must be exactly and completely logged. This includes 
logging which test runs have been executed with which results (pass or 
failure). On the one hand, the testing done must be comprehensible to 
people not directly involved (for example, the customer) on the basis of 
these ➞test logs. On the other hand, the execution of the planned tests 
must be provable. The test log must document who tested which parts, 
when, how intensively, and with what results.

Reproducibility 

is important

Besides the test object, quite a number of documents and pieces of 
information belong to each test execution: test environment, input data, 
test logs, etc. The information related to a test case or test run must be 
maintained in such a way that it is possible to easily repeat the test later 
with the same input data and conditions. The testware must be subjected 
to ➞configuration management (see also section 6.7).

Failure found? If a difference shows up between expected and actual results during 
test execution, it must be decided when evaluating the test logs if the dif-
ference really indicates a failure. If so, the failure must be documented. At 
first, a rough analysis of possible causes must be made. This analysis may 
require the tester to specify and execute additional test cases.

The cause for a failure can also be an erroneous or inexact test speci-
fication, problems with the test infrastructure or the test case, or an incor-
rect test execution. The tester must examine carefully if any of these pos-
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sibilities apply. Nothing is more detrimental to the credibility of a tester 
than reporting a supposed failure whose cause is actually a test problem. 
But the fear of this possibility should not result in potential failures not 
being reported, i.e., the testers starting to self-censor their results. This 
could be fatal as well.

In addition to reporting discrepancies between expected and real 
results, test coverage should be measured (see section 2.2.4). If necessary, 
the use of time should also be logged. The appropriate tools for this pur-
pose should be used (see chapter 7).

Correction may lead 

to new faults

Based on the ➞severity of a failure (see section 6.6.3), a decision must 
be made about how to prioritize fault corrections. After faults are cor-
rected, the tester must make sure the fault has really been corrected and 
that no new faults have been introduced (see section 3.7.4). New testing 
activities result from the action taken for each incident—for example, re-
execution of a test that previously failed in order to confirm a defect fix, 
execution of a corrected test, and/or regression tests. If necessary, new test 
cases must be specified to examine the modified or new source code. It 
would be convenient to correct faults and retest corrections individually to 
avoid unwanted interactions of the changes. In practice, this is not often 
possible. If the test is not executed by the developer, but instead by inde-
pendent testers, a separate correction of individual faults is not practical or 
possible. It would take a prohibitive amount of effort to report every fail-
ure in isolation to the developer and continue testing only after correc-
tions are made. In this case, several defects are corrected together and then 
a new software version is installed for new testing.

The most important 
test cases first

In many projects, there is not enough time to execute all specified test 
cases. When that happens, a reasonable selection of test cases must be 
made to make sure that as many critical failures as possible are detected. 
Therefore, test cases should be prioritized. If the tests end prematurely, the 
best possible result should be achieved. This is called ➞risk-based testing 
(see section 6.4.3).

Furthermore, an advantage of assigning priority is that important test 
cases are executed first, and thus important problems are found and cor-
rected early. An equal distribution of the limited test resources on all test 
objects of the project is not reasonable. Critical and uncritical program 
parts are then tested with the same intensity. Critical parts would be tested 
insufficiently, and resources would be wasted on uncritical parts for no 
reason.
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2.2.4 Test Evaluation and Reporting11

End of test? During test evaluation and reporting, the test object is assessed against the 
set test exit criteria specified during planning. This may result in normal 
termination of the tests if all criteria are met, or it may be decided that 
additional test cases should be run or that the criteria were too hard.

It must be decided whether the test exit criteria defined in the test plan 
are fulfilled.

Considering the risk, an adequate exit criterion must be determined 
for each test technique used. For example, it could be specified that a test 
is considered good enough after execution of 80% of the test object state-
ments. However, this would not be a very high requirement for a test. 
Appropriate tools should be used to collect such measures, or ➞metrics, 
in order to decide when a test should end (see section 7.1.4).

If at least one test exit criterion is not fulfilled after all tests are exe-
cuted, further tests must be executed. Attention should be paid to ensure 
that the new test cases better cover the respective exit criteria. Otherwise, 
the extra test cases just result in additional work but no improvement con-
cerning the end of testing.

Is further effort justifiable? A closer analysis of the problem can also show that the necessary 
effort to fulfill the exit criteria is not appropriate. In that situation, further 
tests are canceled. Such a decision must, naturally, consider the associated 
risk. 

An example of such a case may be the treatment of an exceptional sit-
uation. With the available test environment, it may not be possible to 
introduce or simulate this situation. The appropriate source code for treat-
ing it can then not be executed and tested. In such cases, other examina-
tion techniques should be used, such as, for example, static analysis (see 
section 4.2).

Dead code A further case of not meeting test exit criteria may occur if the speci-
fied criterion is impossible to fulfill in the specific case. If, for example, the 
test object contains ➞dead code, then this code cannot be executed. Thus, 
100% statement coverage is not possible because this would also include 
the unreachable (dead) code. This possibility must be considered in order 
to avoid further senseless tests trying to fulfill the criterion. An impossible 
criterion is often a hint to possible inconsistent or imprecise requirements 
or specifications. For example, it would certainly make sense to investigate 

11. ISTQB calls this phase “Evaluation of test exit criteria and Reporting.”
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why the program contains instructions that cannot be executed. Doing 
this allows further faults to be found so their corresponding failures can be 
prevented.

If further tests are planned, the test process must be resumed, and it 
must be decided at which point the test process will be reentered. Some-
times it is even necessary to revise the test plan because additional 
resources are needed. It is also possible that the test specifications must be 
improved in order to fulfill the required exit criterion.

Further criteria for the 

determination of the test’s 

end

In addition to test coverage criteria, other criteria can be used to 
define the test’s end. A possible criterion is the failure rate. Figure 2-5 
shows the average number of new failures per testing hour over 10 weeks. 
In the 1st week, there was an average of two new failures per testing hour. 
In the 10th week, it is fewer than one failure per two hours. If the failure 
rate falls below a given threshold (e.g., fewer than one failure per testing 
hour), it will be assumed that more testing is not economically justified 
and the test can be ended.
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Figure 2–5
Failure rate

When deciding to stop testing this way it must be considered that some fail-
ures can have very different effects. Classifying and differentiating failures 
according to their impact to the stakeholders (i.e., failure severity) is there-
fore reasonable and should generally be considered (see section 6.6.3).

Consider several test cyclesThe failures found during the test should be repaired, after which a 
new test becomes necessary. If further failures occur during the new test, 
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new test cycles may be necessary. Not planning such correction and test-
ing cycles by assuming that no failures will occur while testing is unrealis-
tic. Because it can be assumed that testing finds failures, additional faults 
must be removed and retested in a further ➞test cycle. If this cycle is 
ignored, then the project will be delayed. The required effort for defect 
correction and the following cycles is difficult to calculate. Historical data 
from previous, similar projects can help. The project plan should provide 
for the appropriate time buffers and personnel resources.

End criteria in practice: 

Time and cost

In practice, the end of a test is often defined by factors that have no 
direct connection to the test: time and costs. If these factors lead to stop-
ping the test activities, it is because not enough resources were provided in 
the project plan or the effort for an adequate test was underestimated.

Successful testing saves costs Even if testing consumed more resources than planned, it nevertheless 
results in savings due to elimination of faults in the software. Faults deliv-
ered in the product mostly cause higher costs when found during opera-
tion (see section 6.3.1).

Test summary report When the test criteria are fulfilled or a deviation from them is clari-
fied, a ➞test summary report should be written for the stakeholders, 
which may include the project manager, the test manager, and possibly the 
customer. In lower-level tests (component tests), this may just take the 
form of a message to the project manager about meeting the criteria. In 
higher-level tests, a formal report may be required.

2.2.5 Test Closure Activities

Learning from experience It is a pity that these activities, which should be executed during this final 
phase in the test process, are often left out. The experience gathered during 
the test work should be analyzed and made available for future projects. Of 
interest are deviations between planning and execution for the different 
activities as well as the assumed causes. For example, the following data 
should be recorded:

■ When was the software system released? 
■ When was the test finished or terminated? 
■ When was a milestone reached or a maintenance release completed?

Important information for evaluation can be extracted by asking the fol-
lowing questions:

■ Which planned results were achieved and when—if at all?
■ Which unexpected events happened (reasons and how they were met)?
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■ Are there any open problems and ➞change requests? Why were they 
not implemented?

■ How was user acceptance after deploying the system?

The evaluation of the test process—i.e., a critical evaluation of the executed 
tasks in the test process, taking into account the resources used and the 
achieved results—will probably show possibilities for improvement. If 
these findings are used in subsequent projects, continuous process 
improvement is achieved. Detailed hints for analysis and improvement of 
the test processes can be found in [Pol 98] and [Black 03].

Archiving testwareA further closure activity is the “conservation” of the testware for the 
future. Software systems are used for a long time. During this time, failures 
not found during testing will occur. Additionally, customers require 
changes. Both of these lead to changes to the program, and the changed 
program must be tested in every case. A major part of the test effort dur-
ing ➞maintenance can be avoided if the testware (test cases, test logs, test 
infrastructure, tools, etc.) is still available. The testware should be deliv-
ered to the organization responsible for maintenance. It can then be 
adapted instead of being constructed from scratch, and it can also be suc-
cessfully used for projects having similar requirements, after adaptation. 
The test material needs to be archived. Sometimes this is necessary in 
order to provide legal evidence of the testing done.

2.3 The Psychology of Testing
Errare humanum estPeople make mistakes, but they do not like to admit them! One goal of test-

ing software is to find discrepancies between the software and the specifi-
cations, or customer needs. The failures found must be reported to the 
developers. This section describes how the psychological problems occur-
ring in connection with this can be dealt with.

The tasks of developing software are often seen as constructive 
actions. The tasks of examining documents and software are seen as 
destructive actions. The attitudes of those involved relating to their job 
often differ due to this perception. But these differences are not justifiable, 
because “testing is an extremely creative and intellectually challenging 
task” [Myers 79, p.15]. 

Developer test“Can the developer test his own program?” is an important and fre-
quently asked question. There is no universally valid answer. If the tester 
is also the author of the program, she must examine her own work very 
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critically. Only very few people are able to keep the necessary distance to 
a self-created product. Who really likes to detect and show their own
mistakes? Developers would rather not find any defects in their own 
program text.

The main weakness of developer tests is that developers who have to 
test their own programs will tend to be too optimistic. There is the danger 
of forgetting reasonable test cases or, because they are more interested in 
programming than in testing, only testing superficially.

Blindness to one’s own 

mistakes

If a developer implemented a fundamental design error—for example, 
if she misunderstood the task—then she will not find this using her own 
tests. The proper test case will not even come to mind. One possibility to 
decrease this problem of “blindness to one’s own errors” is to work 
together in pairs and let a colleague test the programs.

On the other hand, it is advantageous to have a deep knowledge of 
one’s own test object. Time is saved because it is not necessary to learn the 
test object. Management has to decide when saving time is an advantage 
over blindness to one’s own errors. This must be decided depending on the 
criticality of the test object and the associated failure risk.

Independent test team An independent testing team is beneficial for test quality and com-
prehensiveness. Further information on the formation of independent 
test teams can be found in section 6.1.1. The tester can look at the test 
object without bias. It is not the tester’s own product, and the tester does 
not necessarily share possible developer assumptions and misunder-
standings. The tester must, however, acquire the necessary knowledge 
about the test object in order to create test cases, which takes time. But 
the tester typically has more testing knowledge. A developer does not 
have this knowledge and must acquire it (or rather should have acquired 
it before, because the necessary time is often not unavailable during the 
project).

Failure reporting The tester must report the failures and discrepancies observed to the 
author and/or to management. The way this reporting is done can contrib-
ute to cooperation between developers and testers. If it’s not done well, it 
may negatively influence the important communication of these two 
groups. To prove other people’s mistakes is not an easy job and requires 
diplomacy and tact.

Often, failures found during testing are not reproducible in the devel-
opment environment for the developers. Thus, in addition to a detailed 
description of failures, the test environment must be documented in detail 
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so that differences in the environments can be detected, which can be the 
cause for the different behavior. 

It must be defined in advance what constitutes a failure or discrep-
ancy. If it is not clearly visible from the requirements or specifications, the 
customer, or management, is asked to make a decision. A discussion 
between the involved staff, developer, and tester as to whether this is a 
fault or not is not helpful. The often heard reaction of developers against 
any critique is, “It’s not a bug, it’s a feature!” That’s not helpful either.

Mutual comprehensionMutual knowledge of their respective tasks improves cooperation 
between tester and developer. Developers should know the basics of test-
ing and testers should have a basic knowledge of software development. 
This eases the understanding of the mutual tasks and problems.

The conflicts between developer and tester exist in a similar way at the 
management level. The test manager must report the ➞test results to the 
project manager and is thus often the messenger bringing bad news. The 
project manager then must decide whether there still is a chance to meet 
the deadline and possibly deliver software with known problems or if 
delivery should be delayed and additional time used for corrections. This 
decision depends on the severity of the failures and the possibility to work 
around the faults in the software.

2.4 General Principles of Testing

During the last 40 years, several principles for testing have become 
accepted as general rules for test work.

Principle 1:
Testing shows the presence of defects, not their absence.

Testing can show that the product fails, i.e., that there are defects. Test-
ing cannot prove that a program is defect free. Adequate testing reduces 
the probability that hidden defects are present in the test object. Even if 
no failures are found during testing, this is no proof that there are no 
defects.
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Principle 2:
Exhaustive testing is impossible.

It’s impossible to run an exhaustive test that includes all possible values 
for all inputs and their combinations combined with all different 
preconditions. Software, in normal practice, would require an “astro-
nomically” high number of test cases. Every test is just a sample. The 
test effort must therefore be controlled, taking into account risk and 
priorities.

Principle 3:
Testing activities should start as early as possible.

Testing activities should start as early as possible in the software life 
cycle and focus on defined goals. This contributes to finding defects 
early.

Principle 4:
Defect clustering.

Defects are not evenly distributed; they cluster together. Most defects 
are found in a few parts of the test object. Thus if many defects are 
detected in one place, there are normally more defects nearby. During 
testing, one must react flexibly to this principle.

Principle 5:
The pesticide paradox.

Insects and bacteria become resistant to pesticides. Similarly, if the same 
tests are repeated over and over, they tend to loose their effectiveness: 
they don’t discover new defects. Old or new defects might be in pro-
gram parts not executed by the test cases. To maintain the effectiveness 
of tests and to fight this “pesticide paradox,” new and modified test cases 
should be developed and added to the test. Parts of the software not yet 
tested, or previously unused input combinations will then become 
involved and more defects may be found.
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2.5 Ethical Guidelines

This section presents the Code of Tester Ethics as presented in the ISTQB 
Foundation Syllabus of 2011.

Dealing with 
critical information

Testers often have access to confidential and privileged information. 
This may be real, not scrambled production data used as a basis for test 
data, or it may be productivity data about employees. Such data or docu-
ments must be handled appropriately and must not get into the wrong 
hands or be misused.

For other aspects of testing work, moral or ethical rules can be appli-
cable as well. ISTQB has based its code of ethics on the ethics from the 
Association for Computing Machinery (ACM) and the Institute of Electri-
cal and Electronics Engineers (IEEE). The ISTQB code of ethics12 is as fol-
lows:

Principle 6:
Testing is context dependent.

Testing must be adapted to the risks inherent in the use and environ-
ment of the application. Therefore, no two systems should be tested in 
the exactly same way. The intensity of testing, test exit criteria, etc. 
should be decided upon individually for every software system, depend-
ing on its usage environment. For example, safety-critical systems 
require different tests than e-commerce applications.

Principle 7:
No failures means the system is useful is a fallacy.

Finding failures and repairing defects does not guarantee that the sys-
tem meets user expectations and needs. Early involvement of the users 
in the development process and the use of prototypes are preventive 
measures intended to avoid this problem.

12. See [URL: ACM Ethics] and [URL: IEEE Ethics]. The guidelines listed here are from 
the ISTQB curriculum.



36 2 Fundamentals of Testing
■ PUBLIC
»Certified software testers shall act consistently with the public interest.« 

■ CLIENT AND EMPLOYER
»Certified software testers shall act in a manner that is in the best interest 
of their client and employer, consistent with the public interest.«

■ PRODUCT
»Certified software testers shall ensure that the deliverables they provide 
(on the products and systems they test) meet the highest professional 
standards possible.«

■ JUDGMENT
»Certified software testers shall maintain integrity and independence in 
their professional judgment.«

■ MANAGEMENT
»Certified software test managers and leaders shall subscribe to and pro-
mote an ethical approach to the management of software testing.«

■ PROFESSION
»Certified software testers shall advance the integrity and reputation of 
the profession consistent with the public interest.«

■ COLLEAGUES
»Certified software testers shall be fair to and supportive of their col-
leagues, and promote cooperation with software developers.«

■ SELF
»Certified software testers shall participate in lifelong learning regarding 
the practice of their profession and shall promote an ethical approach to 
the practice of the profession.«

Ethical codes are meant to enhance public discussion about certain ques-
tions and values. Ideally, they serve as a guideline for individual responsi-
ble action. They state a “moral obligation,” not a legal one. Certified testers 
must know the ISTQB code of ethics, which serve as a guide for daily work.

2.6 Summary

■ Technical terms in the domain of software testing are often defined and 
used very differently, which can result in misunderstanding. Knowl-
edge of the standards (e.g., [BS 7925-1], [IEEE 610.12], [ISO 9126]) 
and terminology associated with software testing is therefore an 
important part of the education of the Certified Tester. This book’s 
glossary compiles the relevant terms.
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■ Tests are important tasks for ➞quality assurance in software develop-
ment. The international standard ISO 9126-1 [ISO 9126] defines 
appropriate quality characteristics.

■ The fundamental test process consists of the following phases: plan-
ning and control, analysis and design, implementation and execution, 
evaluation of exit criteria and reporting, and test closure activities. A 
test can be finished when previously defined exit criteria are fulfilled.

■ A test case consists of input, expected results, and the list of defined 
preconditions under which the test case must run as well as the speci-
fied ➞postconditions. When the test case is executed, the test object 
shows a certain behavior. If the expected result and actual result differ, 
there is a failure. The expected results should be defined before test 
execution and during test specification (using a test oracle).

■ People make mistakes, but they do not like to admit them! Because of 
this, psychological aspects play an important role in testing.

■ The seven principles for testing must always be kept in mind during 
testing.

■ Certified testers should know the ISTQB’s ethical guidelines, which are 
helpful in the course of their daily work.
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3 Testing in the Software Life Cycle

This chapter explains the role of testing in the entire life cycle of a software 
system, using the general V-model as a reference. Furthermore, we look at test 
levels and the test types that are used during development.

Each project in software development should be planned and executed 
using a life cycle model chosen in advance. Some important models were 
presented and explained in section 2.2. Each of these models implies cer-
tain views on software testing. From the viewpoint of testing, the general 
V-model according to [Boehm 79] plays an especially important role.

The role of testing 
within life cycle models

The V-model shows that testing activities are as valuable as develop-
ment and programming. This has had a lasting influence on the apprecia-
tion of software testing. Not only every tester but every developer as well 
should know this general V-model and the views on testing it implies. 
Even if a different development model is used on a project, the principles 
presented in the following sections can be transferred and applied.

3.1 The General V-Model

The main idea behind the general V-model is that development and testing 
tasks are corresponding activities of equal importance. The two branches 
of the V symbolize this.

The left branch represents the development process. During develop-
ment, the system is gradually being designed and finally programmed. 
The right branch represents the integration and testing process; the pro-
gram elements are successively being assembled to form larger subsystems 
(integration), and their functionality is tested. ➞Integration and testing 
end when the acceptance test of the entire system has been completed. 
Figure 3-1 shows such a V-model.1

1. The V-model is used in many different versions. The names and the number of levels 
vary in literature and the enterprises using it.
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Figure 3–1
The general V-model

The constructive activities of the left branch are the activities known from 
the waterfall model:

■ ➞Requirements definition
The needs and requirements of the customer or the future system user 
are gathered, specified, and approved. Thus, the purpose of the system 
and the desired characteristics are defined.

■ Functional system design
This step maps requirements onto functions and dialogues of the new 
system.

■ Technical system design
This step designs the implementation of the system. This includes the 
definition of interfaces to the system environment and decomposing 
the system into smaller, understandable subsystems (system architec-
ture). Each subsystem can then be developed as independently as 
possible.

■ Component specification
This step defines each subsystem, including its task, behavior, inner 
structure, and interfaces to other subsystems.

■ Programming
Each specified component (module, unit, class) is coded in a program-
ming language.

Through these construction levels, the software system is described in 
more and more detail. Mistakes can most easily be found at the abstraction 
level where they occurred. 
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Thus, for each specification and construction level, the right branch of 
the V-model defines a corresponding test level:

■ Component test
(see section 3.2) verifies whether each software ➞component correctly 
fulfills its specification.

■ ➞Integration test
(see section 3.3) checks if groups of components interact in the way 
that is specified by the technical system design.

■ System test
(see section 3.4) verifies whether the system as a whole meets the spec-
ified requirements.

■ ➞Acceptance test
(see section 3.5) checks if the system meets the customer requirements, 
as specified in the contract and/or if the system meets user needs and 
expectations.

Within each test level, the tester must make sure the outcomes of develop-
ment meet the requirements that are relevant or specified on this specific 
level of abstraction. This process of checking the development results 
according to their original requirements is called ➞validation.

Does a product solve 
the intended task?

When validating,2 the tester judges whether a (partial) product really 
solves the specified task and whether it is fit or suitable for its intended 
use.

Is it the right system?The tester investigates to see if the system makes sense in the context 
of intended product use.

Does a product fulfill 
its specification?

In addition to validation testing, the V-model requires verification3

testing. Unlike validation, ➞verification refers to only one single phase of 
the development process. Verification shall assure that the outcome of a 
particular development level has been achieved correctly and completely, 
according to its specification (the input documents for that development 
level).

Is the system correctly built?Verification activities examine whether specifications are correctly 
implemented and whether the product meets its specification, but not 
whether the resulting product is suitable for its intended use.

2. To validate: to affirm, to declare as valid, to check if something is valid.
3. To verify: to prove, to inspect.
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In practice, every test contains both aspects. On higher test levels the 
validation part increases. To summarize, we again list the most important 
characteristics and ideas behind the general V-model:

Characteristics of the 

general V-model

■ Implementation and testing activities are separated but are equally 
important (left side / right side).

■ The V illustrates the testing aspects of verification and validation.
■ We distinguish between different test levels, where each test level is 

testing “against” its corresponding development level.

The V-model may give the impression that testing starts relatively late, 
after system implementation, but this is not the case. The test levels on the 
right branch of the model should be interpreted as levels of test execution. 
Test preparation (test planning, test analysis and design) starts earlier and 
is performed in parallel to the development phases on the left branch4 (not 
explicitly shown in the V-model).

The differentiation of test levels in the V-model is more than a tempo-
ral subdivision of testing activities. It is instead defining technically very 
different test levels; they have different objectives and thus need different 
methods and tools and require personnel with different knowledge and 
skills. The exact contents and the process for each test level are explained 
in the following sections.

3.2 Component Test

3.2.1 Explanation of Terms

Within the first test level (component testing), the software units are tested 
systematically for the first time. The units have been implemented in the 
programming phase just before component testing in the V-model.

Depending on the programming language the developers used, these 
software units may be called by different names, such as, for example, 
modules and units. In object-oriented programming, they are called 
classes. The respective tests, therefore, are called ➞module tests, ➞unit 
tests (see [IEEE 1008]), and ➞class tests.

Component and 

 component test

Generally, we speak of software units or components. Testing of a 
single software component is therefore called component testing.

4. The so-called W-model (see [Spillner 00]) is a more detailed model that explicitly 
shows this parallelism of development and testing.
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Test basisComponent testing is based on component requirements, and the 
component design (or detailed design). If white box test cases will be 
developed or white box ➞test coverage will be measured, the source code 
can also be analyzed. However, the component behavior must be com-
pared with the component specification. 

3.2.2 Test objects

Typical test objects are program modules/units or classes, (database) 
scripts, and other software components. The main characteristic of com-
ponent testing is that the software components are tested individually and 
isolated from all other software components of the system. The isolation is 
necessary to prevent external influences on components. If testing detects 
a problem, it is definitely a problem originating from the component under 
test itself.

Component test examines 

component internal aspects

The component under test may also be a unit composed of several 
other components. But remember that aspects internal to the components 
are examined, not the components’ interaction with neighboring compo-
nents. The latter is a task for integration tests.

Component tests may also comprise data conversion and migration 
components. Test objects may even be configuration data and database 
components.

3.2.3 Test Environment

Component testing as the lowest test level deals with test objects coming 
“right from the developer’s desk.” It is obvious that in this test level there is 
close cooperation with development.

 Example: 
Testing of a class method

In the VSR subsystem DreamCar, the specification for calculating the price of the 
car states the following:

■ The starting point is baseprice minus discount, where baseprice is the gen-
eral basic price of the vehicle and discount is the discount to this price 
granted by the dealer.

■ A price (specialprice) for a special model and the price for extra equipment 
items (extraprice) shall be added.

■ If three or more extra equipment items (which are not part of the special 
model chosen) are chosen (extras), there is a discount of 10 percent on these 
particular items. If five or more special equipment items are chosen, this dis-
count is increased to 15 percent.
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■ The discount that is granted by the dealer applies only to the baseprice, 
whereas the discount on special items applies to the special items only. These 
discounts cannot be combined for everything.

The following C++-function calculates the total price:5

double calculate_price
(double baseprice, double specialprice,
double extraprice, int extras, double discount)

{
double addon_discount;
double result;

if (extras >= 3) addon_discount = 10;
else if (extras >= 5) addon_discount = 15;
else addon_discount = 0;
if (discount > addon_discount)

addon_discount = discount;

result = baseprice/100.0*(100-discount)
+ specialprice
+ extraprice/100.0*(100-addon_discount);
return result;

}

In order to test the price calculation, the tester uses the corresponding class inter-
face calling the function calculate_price() with appropriate parameters and 
data. Then the tester records the function’s reaction to the function call. That 
means reading and recording the return value of the previous function call. For 
that, a ➞test driver is necessary. A test driver is a program that calls the compo-
nent under test and then receives the test object’s reaction.

For the test object calculate_price(), a very simple test driver could look 
like this:

bool test_calculate_price() {

double price;
bool test_ok = TRUE;

// testcase 01
price = calculate_price(10000.00,2000.00,1000.00,3,0);
test_ok = test_ok && (abs (price-12900.00) < 0.01);6

5. Actually, there is a defect in this program: Discount calculation for >= 5 is not reach-
able. The defect is used when explaining the use of white box analysis in chapter 5.

6. Floating point numbers should not be directly compared, as there may be imprecise 
rounding. As the result for price can be less than 12900.00, the absolute value of the 
difference of “price” and 12900.00 must be evaluated.
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// testcase 02
price = calculate_price(25500.00,3450.00,6000.00,6,0);
test_ok = test_ok && (abs (price-34050.00) < 0.01);

// testcase ...

// test result
return test_ok;
}

The preceding test driver is programmed in a very simple way. Some useful 
extensions could be, for example, a facility to record the test data and the 
results, including date and time of the test, or a function that reads test 
cases from a table, file, or database.

To write test drivers, programming skills and knowledge of the com-
ponent under test are necessary. The component’s program code must be 
available. The tester must understand the test object (in the example, a class 
function) so that the call of the test object can be correctly programmed in 
the test driver. To write a suitable test driver, the tester must know the pro-
gramming language and suitable programming tools must be available.

This is why the developers themselves usually perform the component 
testing. Although this is truly a component test, it may also be called 
developer test. The disadvantages of a programmer testing his own pro-
gram were discussed in section 2.3.

Often, component testing is also confused with debugging. But debug-
ging is not testing. Debugging is finding the cause of failures and remov-
ing them, while testing is the systematic approach for finding failures.

Hint■ Use of component testing frameworks (see [URL: xunit]) reduces the effort in-
volved in programming test drivers and helps to standardize a project's compo-
nent testing architecture. [Vigenschow 2010] demonstrates the use of these 
frameworks using examples of Junit for Java as well as nUnit and CppUnit for 
C++. Generic test drivers make it easier to use colleagues7 who are not familiar 
with all details of the particular component and the programming environment 
for testing. Such test drivers can, for example, be used through a command in-
terface and provide comfortable mechanisms for managing the test data and for 
recording and analyzing the tests. As all test data and test protocols are structured 
in a very similar way, this enables analysis of the tests across several components.

7. Sometimes, two programmers work together, each of them testing the components that 
their colleague has developed. This is called buddy testing or code swaps.
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3.2.4 Test objectives

The test level called component test is not only characterized by the kind 
of test objects and the testing environment, the tester also pursues test 
objectives that are specific for this phase.

Testing the functionality The most important task of component testing is to check that the 
entire functionality of the test object works correctly and completely as 
required by its specification (see ➞functional testing). Here, functionality
means the input/output behavior of the test object. To check the correct-
ness and completeness of the implementation, the component is tested 
with a series of test cases, where each test case covers a particular input/
output combination (partial functionality).

Example: 
Test of the VSR price 

calculation

The test cases for the price calculation of DreamCar in the previous example very 
clearly show how the examination of the input/output behavior works. Each test 
case calls the test object with a particular combination of data; in this example, the 
price for the vehicle in combination with a different set of extra equipment items. 
It is then examined to see whether the test object, given this input data, calculates 
the correct price. For example, test case 2 checks the partial functionality of “dis-
count with five or more special equipment items.” If test case 2 is executed, we can 
see that the test object calculates the wrong total price. Test case 2 produces a fail-
ure. The test object does not completely meet the functional requirements.

Typical software defects found during functional component testing are 
incorrect calculations or missing or wrongly chosen program paths (e.g., 
special cases that were forgotten or misinterpreted).

Later, when the whole system is integrated, each software component 
must be able to cooperate with many neighboring components and 
exchange data with them. A component may then possibly be called or 
used in a wrong way, i.e., not in accordance with its specification. In such 
cases, the wrongly used component should not just suspend its service or 
cause the whole system to crash. Rather, it should be able to handle the sit-
uation in a reasonable and robust way.

Testing robustness This is why testing for ➞robustness is another very important aspect 
of component testing. The way to do this is the same as in functional test-
ing. However, the test focuses on items either not allowed or forgotten in 
the specification. The tests are function calls, test data, and special cases. 
Such test cases are also called ➞negative tests. The component’s reaction 
should be an appropriate exception handling. If there is no such exception 
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handling, wrong inputs can trigger domain faults like division by zero or 
access to a null pointer. Such faults could lead to a program crash.

Example: 
Negative test

In the price calculation example, such negative tests are function calls with nega-
tive values, values that are far too large, or wrong data types (for example, char
instead of int):8

// testcase 20
price = calculate_price(-1000.00,0.00,0.00,0,0);
test_ok = test_ok && (ERR_CODE == INVALID_PRICE);
…
// testcase 30
price = calculate_price(”abc”,0.00,0.00,0,0);
test_ok = test_ok && (ERR_CODE == INVALID_ARGUMENT);

ExcursionSome interesting aspects become clear:

■ There are at least as many reasonable negative tests as positive ones.
■ The test driver must be extended in order to be able to evaluate the test object’s 

exception handling.
■ The test object’s exception handling (the analysis of ERR_CODE in the previous 

example) requires additional functionality. Often more than 50% of the program 
code deals with exception handling. Robustness has its cost.

Component testing should not only check functionality and robustness.
All the component’s characteristics that have a crucial influence on its 

quality and that cannot be tested in higher test levels (or only with a much 
higher cost) should be checked during component testing. This may be 
nonfunctional characteristics like efficiency9 and maintainability.

Efficiency testEfficiency refers to how efficiently the component uses computer 
resources. Here we have various aspects such as use of memory, comput-
ing time, disk or network access time, and the time required to execute the 
component’s functions and algorithms. In contrast to most other nonfunc-
tional tests, a test object’s efficiency can be measured during the test. Suit-
able criteria are measured exactly (e.g., memory usage in kilobytes, 
response times in milliseconds). Efficiency tests are seldom performed for 
all the components of a system. Efficiency is usually only verified in effi-

8. Depending on the compiler, data type errors can be detected during the compiling 
process.

9. The opportunity to use these types of checks on a component level instead of dur-
ing a system test is not often exploited. This leads to efficiency problems only 
becoming visible shortly before the planned release date. Such problems can then 
only be corrected or attenuated at significant cost.
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ciency-critical parts of the system or if efficiency requirements are explic-
itly stated by specifications. This happens, for example, in testing embed-
ded software, where only limited hardware resources are available. 
Another example is testing real-time systems, where it must be guaranteed 
that the system follows given timing constraints.

Maintainability test A maintainability test includes all the characteristics of a program that 
have an influence on how easy or how difficult it is to change the program 
or to continue developing it. Here, it is crucial that the developer fully 
understands the program and its context. This includes the developer of 
the original program who is asked to continue development after months 
or years as well as the programmer who takes over responsibility for a 
colleague’s code. The following aspects are most important for testing 
maintainability: code structure, modularity, quality of the comments in 
the code, adherence to standards, understandability, and currency of the 
documentation.

Example: 
Code that is difficult 

to maintain

The code in the example calculate_price() is not good enough. There are no 
comments, and numeric constants are not declared but are just written into the 
code. If such a value must be changed later, it is not clear whether and where this 
value occurs in other parts of the system, nor is it clear how to find and change it.

Of course, such characteristics cannot be tested by ➞dynamic tests (see 
chapter 5). Analysis of the program text and the specifications is necessary. 
➞Static testing, and especially reviews (see section 4.1) are the correct 
means for that purpose. However, it is best to include such analyses in the 
component test because the characteristics of a single component are 
examined.

3.2.5 Test Strategy

As we explained earlier, component testing is very closely related to devel-
opment. The tester usually has access to the source code, which makes 
component testing the domain of white box testing (see section 5.2).

White box test The tester can design test cases using her knowledge about the com-
ponent’s program structures, functions, and variables. Access to the pro-
gram code can also be helpful for executing the tests. With the help of spe-
cial tools (➞debugger, see section 7.1.4), it is possible to observe program
variables during test execution. This helps in checking for correct or
incorrect behavior of the component. The internal state of a component
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cannot only be observed; it can even be manipulated with the debugger. 
This is especially useful for robustness tests because the tester is able to 
trigger special exceptional situations.

Example: 
Code as test basis

Analyzing the code of calculate_price(), the following command can be recog-
nized as a line that is relevant for testing:

if (discount > addon_discount)

addon_discount = discount;

Additional test cases that lead to fulfilling the condition (discount >
addon_discount) can easily be derived from the code. The specification of the 
price calculation contains no information about this situation; the implemented 
functionality is extra: it is not supposed to be there.

In reality, however, component testing is often done as a pure black box 
testing, which means that the code structure is not used to design test 
cases.10 On the one hand, real software systems consist of countless ele-
mentary components; therefore, code analysis for designing test cases is 
probably only feasible with very few selected components.

On the other hand, the elementary components will later be integrated 
into larger units. Often, the tester only recognizes these larger units as 
units that can be tested, even in component testing. Then again, these 
units are already too large to make observations and interventions on the 
code level with reasonable effort. Therefore, integration and testing plan-
ning must answer the question of whether to test elementary parts or only 
larger units during component testing.

“Test first” developmentTest first programming is a modern approach in component testing. 
The idea is to design and automate the tests first and program the desired 
component afterwards.

This approach is very iterative. The program code is tested with the 
available test cases. The code is improved until it passes the tests. This is 
also called test-driven development (see [Link 03]).

10. This is a serious flaw because 60 to 80% of the code often is never executed—a perfect 
hideout for bugs.
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3.3 Integration Test

3.3.1 Explanation of Terms

After the component test, the second test level in the V-model is integra-
tion testing. A precondition for integration testing is that the test objects 
subjected to it (i.e., components) have already been tested. Defects should, 
if possible, already have been corrected.

Integration Developers, testers, or special integration teams then compose groups 
of these components to form larger structural units and subsystems. This 
connecting of components is called integration.

Integration test Then the structural units and subsystems must be tested to make sure 
all components collaborate correctly. Thus, the goal of the integration test 
is to expose faults in the interfaces and in the interaction between inte-
grated components.

Test basis The test basis may be the software and system design or system archi-
tecture, or workflows through several interfaces and use cases.

Why is integration testing necessary if each individual component has 
already been tested? The following example illustrates the problem.

Example: 
Integration test 
VSR-DreamCar

The VSR subsystem DreamCar (see figure 2-1) consists of several elementary 
components.

calculate_price() check_config()

Graphical User Interface (GUI)

Database

CarConfig

... ...

 

Figure 3–2
Structure of the subsystem 

 VSR-DreamCar

One element is the class CarConfig with the methods calculate_price(), 
check_config(), and other methods. check_config() retrieves all the vehicle data 
from a database and presents them to the user through a graphical user interface 
(GUI). From the user’s point of view, this looks like figure 3-3.

When the user has chosen the configuration of a car, check_config() executes 
a plausibility check of the configuration (base model of the vehicle, special equip-
ment, list of further extra items) and then calculates the price. In this example (see 
figure 3-3), the total resulting price from the base model of the chosen vehicle, the 
special model, and the extra equipment should be $29,000 + $1,413 + $900 = $31,313. 
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However, the price indicated is only $30,413. Obviously, in the current program ver-
sion, accessories (e.g., alloy rims) can be selected without paying for them. Some-
where between the GUI and calculate_price(), the fact that alloy rims were chosen 
gets lost. 

Figure 3–3
User interface for the VSR 
subsystem DreamCar

If the test protocols of the previous component tests show that the fault is neither 
in the function calculate_price() nor in check_config(), the cause of the prob-
lem could be a faulty data transmission between the GUI and check_config() or 
between check_config() and calculate_price().

Even if a complete component test had been executed earlier, such inter-
face problems can still occur. Because of this, integration testing is neces-
sary as a further test level. Its task is to find collaboration and interopera-
bility problems and isolate their causes.

Example:
VSR integration test

Integration of the single components to the subsystem DreamCar is just the be-
ginning of the integration test in the project VSR. The other subsystems of the 
VSR (see chapter 2, figure 2-1) must also be integrated. Then, the subsystems 
must be connected to each other. DreamCar has to be connected to the subsystem 
ContractBase, which is connected to the subsystems JustInTime (order manage-
ment), NoRisk (vehicle insurance), and EasyFinance (financing). In one of the last 
steps of integration, VSR is connected to the external mainframe in the IT center 
of the enterprise.



52 3 Testing in the Software Life Cycle
Integration testing 

 in the large

As the example shows, interfaces to the system environment (i.e., external 
systems) are also subject to integration and integration testing. When 
interfaces to external software systems are examined, we sometimes speak 
of ➞system integration testing, higher-level integration testing, or integra-
tion testing in the large (integration of components is then integration test 
in the small, sometimes called ➞component integration testing). System 
integration testing can be executed only after system testing. The develop-
ment team has only one-half of such an external interface under its control. 
This constitutes a special risk. The other half of the interface is determined 
by an external system. It must be taken as it is, but it is subject to 
unexpected change. Passing a system integration test is no guarantee that 
the system will function flawlessly in the future.

Integration levels Thus, there may be several integration levels for test objects of differ-
ent sizes. Component integration tests will test the interfaces between 
internal components or between internal subsystems. System integration 
tests focus on testing interfaces between different systems and between 
hardware and software. For example, if business processes are imple-
mented as a workflow through several interfacing systems and problems 
occur, it may be very expensive and challenging to find the defect in a spe-
cial component or interface.

3.3.2 Test objects

Assembled components Step-by-step, during integration, the different components are combined 
to form larger units (see section 3.3.5). Ideally, there should be an integra-
tion test after each of these steps. Each subsystem may then be the basis for 
integrating further larger units. Such units (subsystems) may be test 
objects for the integration test later. 

External systems or acquired 

components

In reality, a software system is seldom developed from scratch. Usually, 
an existing system is changed, extended, or linked to other systems (for 
example database systems, networks, new hardware). Furthermore, many 
system components are ➞commercial off-the-shelf (COTS) software 
products (for example, the database in DreamCar). In component testing, 
such existing or standard components are probably not tested. In the inte-
gration test, however, these system components must be taken into account 
and their collaboration with other components must be examined.

The most important test objects of integration testing are internal 
interfaces between components. Integration testing may also comprise 
configuration programs and configuration data. Finally, integration or 
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system integration testing examines subsystems for correct database 
access and correct use of other infrastructure components. 

3.3.3 The Test Environment

As with component testing, test drivers are needed in the integration test. 
They send test data to the test objects, and they receive and log the results. 
Because the test objects are assembled components that have no interfaces 
to the “outside” other than their constituting components, it is obvious and 
sensible to reuse the available test drivers for component testing.

Reuse of the test 

environment

If the component test was well organized, then some test drivers 
should be available. It could be one generic test driver for all components 
or at least test drivers that were designed with a common architecture and 
are compatible with each other. In this case, the testers can reuse these test 
drivers without much effort.

If a component test is poorly organized, there may be usable test driv-
ers for only a few of the components. Their user interface may also be 
completely different, which will create trouble. During integration testing 
in a much later stage of the project, the tester will need to put a lot of effort 
into the creation, change, or repair of the test environment. This means 
that valuable time needed for test execution is lost.

Monitors are necessaryDuring integration testing, additional tools, called monitors, are 
required. ➞Monitors are programs that read and log data traffic between
components. Monitors for standard protocols (e.g., network protocols) are
commercially available. Special monitors must be developed for the obser-
vation of project-specific component interfaces.

3.3.4 Test objectives

Wrong interface formats The test objectives of the test level integration test are clear: to reveal inter-
face problems as well as conflicts between integrated parts.

Problems can arise when attempting to integrate two single compo-
nents. For example, their interface formats may not be compatible with 
each other because some files are missing or because the developers have 
split the system into completely different components than specified 
(chapter 4 covers static testing, which may help finding such issues).

Typical faults in data 

exchange

The harder-to-find problems, however, are due to the execution of the 
connected program parts. These kinds of problems can only be found by 
dynamic testing. They are faults in the data exchange or in the communi-
cation between the components, as in the following examples:
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■ A component transmits syntactically incorrect or no data. The receiv-
ing component cannot operate or crashes (functional fault in a compo-
nent, incompatible interface formats, protocol faults).

■ The communication works but the involved components interpret the 
received data differently (functional fault of a component, contradict-
ing or misinterpreted specifications).

■ Data is transmitted correctly but at the wrong time, or it is late (timing 
problem), or the intervals between the transmissions are too short 
(throughput, load, or capacity problem).

Example: 
Integration problems 

in VSR

The following interface failures could occur during the VSR integration test. 
These can be attributed to the previously mentioned failure types:

■ In the GUI of the DreamCar subsystem, selected extra equipment items are not 
passed on to check_config(). Therefore, the price and the order data would be 
wrong.

■ In DreamCar, a certain code number (e.g., 442 for metallic blue) represents the 
color of the car. In the order management system running on the external 
mainframe, however, some code numbers are interpreted differently (there, for 
example, 442 may represent red). An order from the VSR, seen there as correct, 
would lead to delivery of the wrong product.

■ The mainframe computer confirms an order after checking whether delivery 
would be possible. In some cases, this examination takes so long that the VSR 
assumes a transmission failure and aborts the order. A customer who has care-
fully chosen her car would not be able to order it.

None of these failures can be found in the component test because the 
resulting failures occur only in the interaction between two software com-
ponents.

Nonfunctional tests may also be executed during integration testing, if 
attributes mentioned below are important or are considered at risk. These 
attributes may include reliability, performance, and capacity.

Can the component test 

 be omitted?

Is it possible to do without the component test and execute all the test 
cases after integration is finished? Of course, this is possible, and in prac-
tice it is regretfully often done, but only at the risk of great disadvantages:

■ Most of the failures that will occur in a test designed like this are caused 
by functional faults within the individual components. An implicit 
component test is therefore carried out, but in an environment that is 
not suitable and that makes it harder to access the individual compo-
nents.
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■ Because there is no suitable access to the individual component, some 
failures cannot be provoked and many faults, therefore, cannot be 
found.

■ If a failure occurs in the test, it can be difficult or impossible to locate 
its origin and to isolate its cause.

The cost of trying to save effort by cutting the component test is finding 
fewer of the existing faults and experiencing more difficulty in diagnosis. 
Combining a component test with a subsequent integration test is more 
effective and efficient.

3.3.5 Integration Strategies

In which order should the components be integrated in order to execute 
the necessary test work as efficiently—that is, as quickly and easily—as 
possible? Efficiency is the relation between the cost of testing (the cost of 
test personnel and tools, etc.) and the benefit of testing (number and sever-
ity of the problems found) in a certain test level.

The test manager has to decide this and choose and implement an 
optimal integration strategy for the project.

Components are completed 

at different times

In practice, different software components are completed at different 
times, weeks or even months apart. No project manager or test manager 
can allow testers to sit around and do nothing while waiting until all the 
components are developed and they are ready to be integrated.

An obvious ad hoc strategy to quickly solve this problem is to inte-
grate the components in the order in which they are ready. This means 
that as soon as a component has passed the component test, it is checked 
to see if it fits with another already tested component or if it fits into a par-
tially integrated subsystem. If so, both parts are integrated and the integra-
tion test between both of them is executed. 

Example:
Integration Strategy 
in the VSR project

In the VSR project, the central subsystem ContractBase turns out to be more com-
plex than expected. Its completion is delayed for several weeks because the work 
on it costs much more than originally expected. To avoid losing even more time, 
the project manager decides to start the tests with the available components 
DreamCar and NoRisk. These do not have a common interface, but they exchange 
data through ContractBase. To calculate the price of the insurance, NoRisk needs 
to know which type of vehicle was chosen because this determines the price and 
other parameters of the insurance. As a temporary replacement for ContractBase, 
a ➞stub is programmed. The stub receives simple car configuration data from 
DreamCar, then determines the vehicle type code from this data and passes it on 
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to NoRisk. Furthermore, the stub makes it possible to put in different relevant data 
about the customer. NoRisk calculates the insurance price from the data and shows 
it in a window so it can be checked. The price is also saved in a test log. The stub 
serves as a temporary replacement for the still missing subsystem ContractBase.

This example makes it clear that the earlier the integration test is started 
(in order to save time), the more effort it will take to program the stubs. 
The test manager has to choose an integration strategy in order to optimize 
both factors (time savings vs. cost for the testing environment).

Constraints for integration Which strategy is optimal (the most timesaving and least costly strat-
egy) depends on the individual circumstances in each project. The follow-
ing items must be analyzed:

■ The system architecture determines how many and which compo-
nents the entire system consists of and in which way they depend on 
each other.

■ The project plan determines at what time during the course of the pro-
ject the parts of the system are developed and when they should be 
ready for testing. The test manager should be consulted when deter-
mining the order of implementation.

■ The test plan determines which aspects of the system shall be tested, 
how intensely, and on which test level this has to happen.

Discuss the integration 

strategy

The test manager, taking into account these general constraints, has to 
design an optimal integration strategy for the project. Because the integra-
tion strategy depends on delivery dates, the test manager should consult 
the project manager during project planning. The order of component 
implementation should be suitable for integration testing.

Generic strategies When making plans, the test manager can follow these generic inte-
gration strategies:

■ Top-down integration
The test starts with the top-level component of the system that calls 
other components but is not called itself (except for a call from the 
operating system). Stubs replace all subordinate components. Succes-
sively, integration proceeds with lower-level components. The higher 
level that has already been tested serves as test driver.
• Advantage: Test drivers are not needed, or only simple ones are re-

quired, because the higher-level components that have already been 
tested serve as the main part of the test environment.
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• Disadvantage: Stubs must replace lower-level components not yet 
integrated. This can be very costly.

■ Bottom-up integration
The test starts with the elementary system components that do not call 
further components, except for functions of the operating system. 
Larger subsystems are assembled from the tested components and then 
tested.
• Advantage: No stubs are needed.
• Disadvantage: Test drivers must simulate higher-level components.

■ Ad hoc integration
The components are being integrated in the (casual) order in which 
they are finished.
• Advantage: This saves time because every component is integrated 

as early as possible into its environment.
• Disadvantage: Stubs as well as test drivers are required.

■ Backbone integration
A skeleton or backbone is built and components are gradually inte-
grated into it [Beizer 90].
• Advantage: Components can be integrated in any order.
• Disadvantage: A possibly labor-intensive skeleton or backbone is re-

quired.

Top-down and Bottom-up integration in their pure form can be applied 
only to program systems that are structured in a strictly hierarchical way; 
in reality, this rarely occurs. This is the reason a more or less individualized 
mix of the previously mentioned integration strategies11 might be chosen.

Avoid the big bang!Any nonincremental integration—also called ➞big bang integra-
tion—should be avoided. Big bang integration means waiting until all soft-
ware elements are developed and then throwing everything together in 
one step. This typically happens due to the lack of an integration strategy. 
In the worst cases, even component testing is skipped. There are obvious 
disadvantages of this approach:

■ The time leading up to the big bang is lost time that could have been 
spent testing. As testing always suffers from lack of time, no time that 
could be used for testing should be wasted.

11. Special integration strategies can be followed for object-oriented, distributed, and real-
time systems (see [Winter 98], [Bashir 99], [Binder 99]).
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■ All the failures will occur at the same time. It will be difficult or impos-
sible to get the system to run at all. It will be very difficult and time-
consuming to localize and correct defects.

3.4 System Test

3.4.1 Explanation of Terms

After the integration test is completed, the third and next test level is the 
system test. System testing checks if the integrated product meets the spec-
ified requirements. Why is this still necessary after executing component 
and integration tests? The reasons for this are as follows:

Reasons for system test ■ In the lower test levels, the testing was done against technical specifica-
tions, i.e., from the technical perspective of the software producer. The 
system test, though, looks at the system from the perspective of the 
customer and the future user.12 The testers validate whether the 
requirements are completely and appropriately implemented.

■ Many functions and system characteristics result from the interaction 
of all system components; consequently, they are visible only when the 
entire system is present and can be observed and tested only there.

Example: 
VSR-System tests

The main purpose of the VSR-System is to make ordering a car as easy as 
possible.

While ordering a car, the user uses all the components of the VSR-System: 
the car is configured (DreamCar), financing and insurance are calculated (Easy-
Finance, NoRisk), the order is transmitted to production (JustInTime), and the 
contracts are archived (ContractBase). The system fulfills its purpose only when 
all these system functions and all the components collaborate correctly. The 
system test determines whether this is the case.

The test basis includes all documents or information describing the test 
object on a system level. This may be system requirements, specifications, 
risk analyses if present, user manuals, etc.

12. The customer (who has ordered and paid for the system) and the user (who uses the 
system) can be different groups of people or organizations with their own specific 
interests and requirements for the system.
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3.4.2 Test Objects and Test Environment

After the completion of the integration test, the software system is com-
plete. The system test tests the system as a whole in an environment as sim-
ilar as possible to the intended ➞production environment.

Instead of test drivers and stubs, the hardware and software products 
that will be used later should be installed on the test platform (hardware, 
system software, device driver software, networks, external systems, etc.). 
Figure 3-4 shows an example of the VSR-System test environment.

The system test not only tests the system itself, it also checks system 
and user documentation, like system manuals, user manuals, training 
material, and so on. Testing configuration settings as well as optimizing 
the system configuration during load and performance testing (see sec-
tion 3.7.2) must often be covered.

DB server

Mainframe

Web server

File server Application   server

VSR workstations

 

Figure 3–4
Example of a system test 
environment

➞data qualityIt is getting more and more important to check the quality of data in sys-
tems that use a database or large amounts of data. This should be included 
in the system test. The data itself will then be new test objects. It must be 
assured that it is consistent, complete, and up-to-date. For example, if a 
system finds and displays bus connections, the station list and schedule 
data must be correct.

System test requires a 

separate test environment

One mistake is commonly made to save costs and effort: instead of 
the system being tested in a separate environment, the system test is exe-
cuted in the customer’s operational environment. This is detrimental for a 
couple of reasons:
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■ During system testing, it is likely that failures will occur, resulting in 
damage to the customer’s operational environment. This may lead to 
expensive system crashes and data loss in the production system.

■ The testers have only limited or no control over parameter settings and 
the configuration of the operational environment. The test conditions 
may change over time because the other systems in the customer’s 
environment are running simultaneously with the test. The system 
tests that have been executed cannot be reproduced or can only be 
reproduced with difficulty (see section 3.7.4 on regression testing).

System test effort is often 

underestimated

The effort of an adequate system test must not be underestimated, espe-
cially because of the complex test environment. [Bourne 97] states the 
experience that at the beginning of the system test, only half of the testing 
and quality control work has been done (especially when a client/server 
system is developed, as in the VSR-example).

3.4.3 Test Objectives

It is the goal of the system test to validate whether the complete system 
meets the specified functional and nonfunctional requirements (see sec-
tions 3.7.1 and 3.7.2) and how well it does that. Failures from incorrect, 
incomplete, or inconsistent implementation of requirements should be 
detected. Even undocumented or forgotten requirements should be 
identified.

3.4.4 Problems in System Test Practice

Excursion In (too) many projects, the requirements are incompletely or not at all written down. 
The problem this poses for testers is that it’s unclear how the system is supposed to 
behave. This makes it hard to find defects.

Unclear system requirements If there are no requirements, then all behaviors of a system would be valid 
and assessment would be impossible. Of course, the users or the customers 
have a certain perception of what they expect of “their” software system. 
Thus, there must be requirements. Yet sometimes these requirements are 
not written down anywhere; they exist only in the minds of a few people 
who are involved in the project. The testers then have the undesirable role 
of gathering information about the required behavior after the fact. One 
possible technique to cope with such a situation is exploratory testing (see 
section 5.3, and for more detailed discussion, [Black 02]).
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Missed decisionsWhile the testers identify the original requirements, they will discover 
that different people may have completely different views and ideas on the 
same subject. This is not surprising if the requirements have never been 
documented, reviewed, or released during the project. The consequences 
for those responsible for system testing are less desirable: They must col-
lect information on the requirements; they also have to make decisions 
that should have been made many months earlier. This collection of infor-
mation may be very costly and time consuming. Test completion and 
release of the completed system will surely be delayed.

Project failIf the requirements are not specified, of course the developers do not 
have clear objectives either. Thus, it is very unlikely that the developed sys-
tem will meet the implicit requirements of the customer. Nobody can seri-
ously expect that it is possible to develop a usable system given these con-
ditions. In such projects, execution of the system test can probably only 
announce the collapse of the project.

3.5 Acceptance Test

All the test levels described thus far represent testing activities that are 
under the producer’s responsibility. They are executed before the software 
is presented to the customer or the user.

Before installing and using the software in real life (especially for soft-
ware developed individually for a customer), another last test level must 
be executed: the acceptance test. Here, the focus is on the customer’s and 
user’s perspective. The acceptance test may be the only test that the cus-
tomers are actually involved in or that they can understand. The customer 
may even be responsible for this test!

➞Acceptance tests may also be executed as a part of lower test levels 
or be distributed over several test levels:

■ A commercial-off-the-shelf product (COTS) can be checked for 
acceptance during its integration or installation.

■ Usability of a component can be acceptance tested during its compo-
nent test.

■ Acceptance of new functionality can be checked on prototypes before 
system testing.
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There are four typical forms of acceptance testing:

■ Contract acceptance testing
■ User acceptance testing
■ Operational acceptance testing
■ Field testing (alpha and beta testing)

How much 

 acceptance testing?

How much acceptance testing should be done is dependent on the product 
risk. This may be very different. For customer-specific systems, the risk is 
high and a comprehensive acceptance test is necessary. At the other 
extreme, if a piece of standard software is introduced, it may be sufficient 
to install the package and test a few representative usage scenarios. If the 
system interfaces with other systems, collaboration of the systems through 
these interfaces must be tested.

Test basis The test basis for acceptance testing can be any document describing 
the system from the user or customer viewpoint, such as, for example, 
user or system requirements, use cases, business processes, risk analyses, 
user process descriptions, forms, reports, and laws and regulations as 
well as descriptions of maintenance and system administration rules and 
processes.

3.5.1 Contract Acceptance Testing

If customer-specific software was developed, the customer will perform 
contract acceptance testing (in cooperation with the vendor). Based on the 
results, the customer considers whether the software system is free of 
(major) deficiencies and whether the service defined by the development 
contract has been accomplished and is acceptable. In case of internal soft-
ware development, this can be a more or less formal contract between the 
user department and the IT department of the same enterprise.

Acceptance criteria The test criteria are the acceptance criteria determined in the develop-
ment contract. Therefore, these criteria must be stated as unambiguously 
as possible. Additionally, conformance to any governmental, legal, or 
safety regulations must be addressed here.

In practice, the software producer will have checked these criteria 
within his own system test. For the acceptance test, it is then enough to 
rerun the test cases that the contract requires as relevant for acceptance, 
demonstrating to the customer that the acceptance criteria of the contract 
have been met.



3.5 Acceptance Test 63
Because the supplier may have misunderstood the acceptance criteria, 
it is very important that the acceptance test cases are designed by or at 
least thoroughly reviewed by the customer.

Customer (site) 
acceptance test

In contrast to system testing, which takes place in the producer envi-
ronment, acceptance testing is run in the customer’s actual operational 
environment.13 Due to these different testing environments, a test case 
that worked correctly during the system test may now suddenly fail. The 
acceptance test also checks the delivery and installation procedures. The 
acceptance environment should be as similar as possible to the later oper-
ational environment. A test in the operational environment itself should 
be avoided to minimize the risk of damage to other software systems used 
in production.

The same techniques used for test case design in system testing can be 
used to develop acceptance test cases. For administrative IT systems, busi-
ness transactions for typical business periods (like a billing period) should 
be considered.

3.5.2 Testing for User Acceptance

Another aspect concerning acceptance as the last phase of validation is the 
test for user acceptance. Such a test is especially recommended if the 
customer and the user are different.

Example:
Different user groups

In the VSR example, the responsible customer is a car manufacturer. But the car 
manufacturer’s shops will use the system. Employees and customers who want to 
purchase cars will be the system’s end users. In addition, some clerks in the 
company’s headquarter will work with the system, e.g., to update price lists in the 
system.

Get acceptance of every 

user group

Different user groups usually have completely different expectations of a 
new system. Users may reject a system because they find it “awkward” to 
use, which can have a negative impact on the introduction of the system. 
This may happen even if the system is completely OK from a functional 
point of view. Thus, it is necessary to organize a user acceptance test for 
each user group. The customer usually organizes these tests, selecting test 
cases based on business processes and typical usage scenarios.

13. Sometimes the acceptance test consists of two cycles: the first in the system test 
environment, the second in the customer’s environment.
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Present prototypes 

 to the users early

If major user acceptance problems are detected during acceptance 
testing, it is often too late to implement more than cosmetic countermeas-
ures. To prevent such disasters, it is advisable to let a number of represent-
atives from the group of future users examine prototypes of the system 
early.

3.5.3 Operational (Acceptance) Testing

Operational (acceptance) testing assures the acceptance of the system by 
the system administrators.14 It may include testing of backup/restore cycles 
(including restoration of copied data), disaster recovery, user management, 
and checks of security vulnerabilities.

3.5.4 Field Testing

If the software is supposed to run in many different operational environ-
ments, it is very expensive or even impossible for the software producer to 
create a test environment for each of them during system testing. In such 
cases, the software producer may choose to execute a ➞field test after the 
system test. The objective of the field test is to identify influences from 
users’ environments that are not entirely known or specified and to elimi-
nate them if necessary. If the system is intended for the general market (a 
COTS system), this test is especially recommended.

Testing done by 

representative customers

For this purpose, the producer delivers stable prerelease versions of 
the software to preselected customers who adequately represent the mar-
ket for this software or whose operational environments are appropriately 
similar to possible environments for the software.

These customers then either run test scenarios prescribed by the pro-
ducer or run the product on a trial basis under realistic conditions. They 
give feedback to the producer about the problems they encountered along 
with general comments and impressions about the new product. The pro-
ducer can then make the specific adjustments.

Alpha and beta testing Such testing of preliminary versions by representative customers is 
also called ➞alpha testing or ➞beta testing. Alpha tests are carried out at 
the producer’s location, while beta tests are carried out at the customer’s 
site.

A field test should not replace an internal system test run by the pro-
ducer (even if some producers do exactly this). Only when the system test 

14. This verifies that the system complies with the needs of the system administrators.
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has proven that the software is stable enough should the new product be 
given to potential customers for a field test.

Dogfood testA new term in software testing is dogfood test. It refers to a kind of 
internal field testing where the product is distributed to and used by inter-
nal users in the company that developed the software. The idea is that “if 
you make dogfood, try it yourself first.” Large suppliers of software like 
Microsoft and Google advocate this approach before beta testing.

3.6 Testing New Product Versions

Until now, it was assumed that a software development project is finished 
when the software passes the acceptance test and is deployed. But that’s not 
the reality. The first deployment marks only the beginning of the software 
life cycle. Once it is installed, it will often be used for years or decades and 
is changed, updated, and extended many times. Each time that happens, a 
new ➞version of the original product is created. The following sections 
explain what must be considered when testing such new product versions.

3.6.1 Software Maintenance

Software does not wear out. Unlike with physical industry products, the 
purpose of software maintenance is not to maintain the ability to operate 
or to repair damages caused by use. Defects do not originate from wear and 
tear. They are design faults that already exist in the original version. We 
speak of software maintenance when a product is adapted to new opera-
tional conditions (adaptive maintenance, updates of operating systems, 
databases, middleware) or when defects that have been in the product 
before are corrected (corrective maintenance). Testing changes made 
during maintenance can be difficult because the system’s specifications are 
often out of date or missing, especially in the case of legacy systems.

Example:
Analysis of VSR hotline 
requests

The VSR-System has been distributed and installed after intense testing. In order 
to find areas with weaknesses that had not been found previously, the central hot-
line generates an analysis of all requests that have come in from the field. Here are 
some examples:
1. A few dealers use the system on an unsupported platform with an old version 

of the operating system. In such environments, sometimes the host access 
causes system crashes.

2. Many customers consider the selection of extra equipment to be awkward, 
especially when they want to compare prices between different packages of 
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extra equipment. Many users would therefore like to save equipment config-
urations and to be able to retrieve them after a change.

3. Some of the seldom-occurring insurance prices cannot be calculated at all 
because the corresponding calculation wasn’t implemented in the insurance 
component.

4. Sometimes, even after more than 15 minutes, a car order is not yet confirmed 
by the server. The system cuts the connection after 15 minutes to avoid hav-
ing unused connections remain open. The customers are angry with this 
because they waste a lot of time waiting in vain for confirmation of the pur-
chase order. The dealer then has to repeat inputting the order and then has to 
mail the confirmation to the customer.

Problem 1 is the responsibility of the dealer because he runs the system on a plat-
form for which it was not intended. Still, the software producer might change the 
program to allow it to be run on this platform to, for example, save the dealer 
from the cost of a hardware upgrade.

Problems like number 2 will always arise, regardless of how well and com-
pletely the requirements were originally analyzed. The new system will generate 
many new experiences and therefore new requirements will naturally arise.

Improve the test plan Problem 3 could have been detected during system testing. But testing cannot 
guarantee that a system is completely fault free. It can only provide a sample with 
a certain probability to reveal failures. A good test manager will analyze which 
kind of testing would have detected this problem and will adequately improve or 
adapt the test plan.

Problem 4 had been detected in the integration test and had been solved. The 
VSR-System waits for a confirmation from the server for more than 15 minutes 
without cutting the connection. The long waiting time happens in special cases, 
when certain batch processes are run in the host computer. The fact that the cus-
tomer does not want to wait in the shop for such a long time is another subject.

These four examples represent typical problems that will be found in even 
the most mature software system:

1. The system is run under new operating conditions that were not pre-
dictable and not planned.

2. The customers express new wishes.
3. Functions are necessary for rarely occurring special cases that were 

not anticipated.
4. Crashes that happen rarely or only after a very long run time are re-

ported. These are often caused by external influences.

Therefore, after its deployment, every software system requires certain cor-
rections and improvements. In this context, we speak of software mainte-
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nance. But the fact that maintenance is necessary in any case must not be 
used as a pretext for cutting down on component, integration, or system 
testing. We sometime hear, “We must continuously publish updates any-
way, so we don’t need to take testing so seriously, even if we miss defects.” 
Managers behaving this way do not understand the true costs of failures.

Testing after 
maintenance work

If the production environment has been changed or the system is 
ported to a new environment (for example, by migration to a new plat-
form), a new acceptance test should be run by the organization responsi-
ble for operations. If data has to be migrated or converted, even this aspect 
must be tested for correctness and completeness.

Otherwise, the test strategy for testing a changed system is the same as 
for testing every new product version: Every new or changed part of the 
code must be tested. Additionally, in order to avoid side effects, the 
remainder of the system should be regression tested (see section 3.7.4) as 
comprehensibly as possible. The test will be easier and more successful if 
even maintenance releases are planned in advance and considered in the 
test plans.

There should be two strategies: one for emergency fixes (or “hot 
fixes”) and one for planned releases. For an ordinary release, a test 
approach should be planned early, comprising thorough testing of any-
thing new or changed as well as regression testing. For an emergency fix, 
a minimal test should be executed to minimize the time to release. Then 
the normal comprehensive test should be executed as soon as possible 
afterwards.

Testing before retirementIf a system is scheduled for retirement, then some testing is also 
useful.

Testing for the retirement of a system should include the testing of 
data archiving or data migration into the future system.

3.6.2 Testing after Further Development

Apart from maintenance work necessary because of failures, there will be 
changes and extensions to the product that project management has 
intended from the beginning.

Example:
Planning of the VSR 
development

In the development plan for VSR release 2, the following work is scheduled:
1. New communication software will be installed on the host in the car manu-

facturer’s computing center; therefore, the VSR communication module must 
be adapted.
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2. Certain system extensions that could not be finished in release 1 will now be 
delivered in release 2.

3. The installation base shall be extended to the EU dealer network. Therefore, 
specific adaptations necessary for each country must be integrated and all the 
manuals and the user interface must be translated.

These three tasks come neither from defects nor from unforeseen user 
requests. So they are not part of ordinary maintenance but instead normal 
further product development.

The first point results from a planned change of a neighbor system. 
Point 2 involves functionality that had been planned from the beginning 
but could not be implemented as early as intended. Point 3 represents 
extensions that become necessary in the course of a planned market 
expansion.

A software product is certainly not finished with the release of the first 
version. Additional development is continuously occurring. An improved 
product version will be delivered at certain intervals, such as, e.g., once a 
year. It is best to synchronize these ➞releases with the ongoing mainte-
nance work. For example, every six months a new version is introduced: 
one maintenance update and one genuine functional update.

After each release, the project effectively starts over, running through 
all the project phases. This approach is called iterative software develop-
ment. Nowadays this is the usual way of developing software.15

Testing new releases How must testing respond to this? Do we have to completely rerun all 
the test levels for every release of the product? Yes, if possible! As with 
maintenance testing, anything new or changed should be tested, and the 
remainder of the system should be regression tested to find unexpected 
side effects (see section 3.7.4).

3.6.3 Testing in Incremental Development

Incremental development means that the project is not done in one (pos-
sibly large) piece but as a preplanned series of smaller developments and 
deliveries. System functionality and reliability will grow over time.

The objective of this is to make sure the system meets customer needs 
and expectations. The early releases allow customer feedback early and 

15. This aspect is not shown in the general V-model. Only more modern life cycle models 
show iterations explicitly (see [Jacobson 99], [Beck 00], [Beedle 01]).
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continuously. Examples of incremental models are Prototyping, Rapid 
Application Development (RAD) [Martin 91], Rational Unified Process 
(RUP), Evolutionary Development [Gilb 05], the Spiral Model [Boehm 
86], and so-called agile development methods such as Extreme Program-
ming (XP) [Beck 00], Dynamic Systems Development Method (DSDM) 
[Stapleton 02], and SCRUM [Beedle 01]. SCRUM has become more and 
more popular during recent years and is nowadays much used amongst 
agile approaches.

Testing must be adapted to such development models, and continuous 
integration testing and regression testing are necessary. There should be 
reusable test cases for every component and increment, and they should 
be reused and updated for every additional increment. If this is not the 
case, the product’s reliability tends to decrease over time instead of 
increasing.

This danger can be reduced by running several V-models in sequence, 
one for each increment, where every next “V” reuses existing test material 
and adds the tests necessary for new development or for higher reliability 
requirements.
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Figure 3–5
Testing in incremental 
development

3.7 Generic Types of Testing

The previous chapters gave a detailed view of testing in the software life 
cycle, distinguishing several test levels. Focus and objectives change when 
testing in these different levels. And different types of testing are relevant 
on each test level.
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The following types of testing can be distinguished:

■ Functional testing
■ Nonfunctional testing
■ Testing of software structure
■ Testing related to changes

3.7.1 Functional Testing

Functional testing includes all kind of tests that verify a system’s input/out-
put behavior. To design functional test cases, the black box testing methods 
discussed in section 5.1 are used, and the test bases are the functional 
requirements.

Functional requirements Functional requirements ➞specify the behavior of the system; they 
describe what the system must be able to do. Implementation of these 
requirements is a precondition for the system to be applicable at all. 
Characteristics of functionality, according to [ISO 9126], are suitability, 
accuracy, interoperability, and security.

Requirements definition When a project is run using the V-model, the requirements are col-
lected during the phase called “requirements definition” and documented 
in a requirements management system (see section 7.1.1). Text-based 
requirements specifications are still in use as well. Templates for this 
document are available in [IEEE 830].

The following text shows a part of the requirements paper concerning 
price calculation for the system VSR (see section 3.2.4).

Example: 
Requirements of the 

VSR-System

R 100: The user can choose a vehicle model from the current model list for con-
figuration.

R 101: For a chosen model, the deliverable extra equipment items are indicated.
The user can choose the desired individual equipment from this list.

R 102: The total price of the chosen configuration is continuously calculated 
from current price lists and displayed.

Requirements-based testing Requirements-based testing uses the final requirements as the basis for 
testing. For each requirement, at least one test case is designed and docu-
mented in the test specification. The test specification is then reviewed. 
The testing of requirement 102 in the preceding example could look like 
the following example.
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Example:
Requirements-based 
testing

T 102.1: A vehicle model is chosen; its base price according to the sales manual 
is displayed.

T 102.2: A special equipment item is selected; the price of this accessory is 
added.

T 102.3: A special equipment item is deselected; the price falls accordingly.
T 102.4: Three special equipment items are selected; the discount comes into 

effect as defined in the specification.

Usually, more than one test case is needed to test a functional requirement.
Requirement 102 in the example contains several rules for different 

price calculations. These must be covered by a set of test cases 
(102.1–102.4 in the preceding example). Using black box test methods 
(e.g., ➞equivalence partitioning), these test cases can be further refined 
and extended if desired. The decisive fact is if the defined test cases (or a 
minimal subset of them) have run without failure, the appropriate func-
tionality is considered validated.

Requirements-based functional testing as shown is mainly used in 
system testing and other higher levels of testing. If a software system’s pur-
pose is to automate or support a certain business process for the customer, 
business-process-based testing or use-case-based testing are other similar 
suitable testing methods (see section 5.1.5).

Example:
Testing based on 
business process

From the dealer’s point of view, VSR supports him in the sales process. The pro-
cess can, for example, look like this:

■ The customer selects a type of vehicle he is interested in from the available mo-
dels.

■ The customer gets the information about the type of extra equipment and pri-
ces and selects the desired car.

■ The dealer suggests alternative ways of financing the car.
■ The customer decides and signs the contract.

A business process analysis (which is usually elaborated as part of the 
requirements analysis) shows which business processes are relevant and 
how often and in which context they appear. It also shows which persons, 
enterprises, and external systems are involved. Test scenarios simulating
typical business processes are constructed based on this analysis. The test 
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scenarios are prioritized using the frequency and the relevance of the par-
ticular business processes.

Requirements-based testing focuses on single system functions (e.g., 
the transmission of a purchase order). Business-process-based testing, 
however, focuses on the whole process consisting of many steps (e.g., the 
sales conversation, consisting of configuring a car, agreeing on the pur-
chase contract, and the transmission of the purchase order). This means a 
sequence of several tests.

Of course, for the users of the VirtualShowRoom system, it is not 
enough to see if they can choose and then buy a car. More important for 
ultimate acceptance is often how easily they can use the system. This 
depends on how easy it is to work with the system, if it reacts quickly 
enough, and if it returns easily understood information. Therefore, along 
with the functional criteria, the nonfunctional criteria must also be 
checked and tested.

3.7.2 Nonfunctional Testing

➞Nonfunctional requirements do not describe the functions; they 
describe the attributes of the functional behavior or the attributes of the 
system as a whole, i.e., “how well” or with what quality the (partial) system 
should work. Implementation of such requirements has a great influence 
on customer and user satisfaction and how much they enjoy using the 
product. Characteristics of these requirements are, according to [ISO 
9126], reliability, usability, and efficiency. (For the new syllabus, which is 
effective from 2015, the basis is not ISO 9126 but ISO/IEC 25010:2011. 
Compatibility and security are added to the list of system characteristics.) 
Indirectly, the ability of the system to be changed and to be installed in new 
environments also has an influence on customer satisfaction. The faster 
and the easier a system can be adapted to changed requirements, the more 
satisfied the customer and the user will be. These two characteristics are 
also important for the supplier, because they help to reduce maintenance 
costs.

According to [Myers 79], the following nonfunctional system charac-
teristics should be considered in the tests (usually in system testing):
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■ ➞Load test: Measuring of the system behavior for increasing system 
loads (e.g., the number of users that work simultaneously, number of 
transactions)

■ ➞Performance test: Measuring the processing speed and response 
time for particular use cases, usually dependent on increasing load

■ ➞Volume test: Observation of the system behavior dependent on the 
amount of data (e.g., processing of very large files)

■ ➞Stress test: Observation of the system behavior when the system is 
overloaded

■ Testing of security against unauthorized access to the system or data, 
denial of service attacks, etc.

■ Stability or reliability test: Performed during permanent operation 
(e.g., mean time between failures or failure rate with a given user pro-
file)

■ ➞Robustness test: Measuring the system’s response to operating 
errors, bad programming, hardware failure, etc. as well as examination 
of exception handling and recovery

■ Testing of compatibility and data conversion: Examination of com-
patibility with existing systems, import/export of data, etc.

■ Testing of different configurations of the system: For example, differ-
ent versions of the operating system, user interface language, hardware 
platform, etc. (➞back-to-back testing)

■ Usability test: Examination of the ease of learning the system, ease and 
efficiency of operation, understandability of the system outputs, etc., 
always with respect to the needs of a specific group of users ([ISO 
9241], [ISO 9126])

■ Checking of the documentation: For compliance with system behav-
ior (e.g., user manual and GUI)

■ Checking maintainability: Assessing the understandability of the sys-
tem documentation and whether it is up-to-date; checking if the sys-
tem has a modular structure; etc.

A major problem in testing nonfunctional requirements is the often impre-
cise and incomplete expression of these requirements. Expressions like 
“the system should be easy to operate” and “the system should be fast” are 
not testable in this form. 
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Hint ■ Representatives of the (later) system test personnel should participate in early 
requirement reviews and make sure that every nonfunctional requirement (as 
well as each functional one) can be measured and is testable.

Furthermore, many nonfunctional requirements are so fundamental that 
nobody really thinks about mentioning them in the requirements paper 
(presumed matters of fact).16 Even such implicit characteristics must be 
validated because they may be relevant.

Example: 
Presumed requirements

The VSR-System is designed for use on a market-leading operating system. It is 
obvious that the recommended or usual user interface conventions are followed 
for the “look and feel” of the VSR GUI. The DreamCar GUI (see figure 3-3) vio-
lates these conventions in several aspects. Even if no particular requirement is 
specified, such deviations from “matter of fact requirements” can and must be 
seen as faults or defects.

Excursion: 
Testing nonfunctional 

requirements

In order to test nonfunctional characteristics, it makes sense to reuse existing func-
tional tests. The nonfunctional tests are somehow “piggybacking” on the functional 
tests. Most nonfunctional tests are black box tests. An elegant general testing 
approach could look like this:

Scenarios that represent a cross section of the functionality of the entire system 
are selected from the functional tests. The nonfunctional property must be observa-
ble in the corresponding test scenario. When the test scenario is executed, the non-
functional characteristic is measured. If the resulting value is inside a given limit, the 
test is considered “passed.” The functional test practically serves as a vehicle for 
determining the nonfunctional system characteristics.

3.7.3 Testing of Software Structure

Structural techniques (➞structure-based testing, white box testing) use 
information about the test object’s internal code structure or architecture. 
Typically, the control flow in a component, the call hierarchy of proce-
dures, or the menu structure is analyzed. Abstract models of the software 
may also be used. The objective is to design and run enough test cases to, 
if possible, completely cover all structural items. In order to do this, useful 
(and enough) test cases must be developed.

Structural techniques are most used in component and integration 
testing, but they can also be applied at higher levels of testing, typically as 

16. This is regrettably also true for functional requirements. The “of course the system has 
to do X” implicit requirement is one of the main problems for testing.
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extra tests (for example, to cover menu structures). Structural techniques 
are covered in detail in sections 4.2 and 5.2.

3.7.4 Testing Related to Changes and Regression Testing

When changes are implemented, parts of the existing software are changed 
or new modules are added. This happens when correcting faults and per-
forming other maintenance activities. Tests must show that earlier faults 
are really repaired (➞retesting). Additionally, there is the risk of unwanted 
side effects. Repeating other tests in order to find them is called regression 
testing.

Regression testA regression test is a new test of a previously tested program following 
modification to ensure that faults have not been introduced or uncovered 
as a result of the changes made (uncovering masked defects).

Thus, regression testing may be performed at all test levels and applies 
to functional, nonfunctional, and ➞structural test. Test cases to be used in 
regression testing must be well documented and reusable. Therefore, they 
are strong candidates for ➞test automation.

The question is how extensive a regression test has to be. There are the 
following possibilities:

How much retest and 

regression test

1. Rerunning of all the tests that have detected failures whose reasons 
(the defects) have been fixed in the new software release (defect retest, 
confirmation testing)

2. Testing of all program parts that were changed or corrected (testing of 
altered functionality)

3. Testing of all program parts or elements that were newly integrated 
(testing of new functionality)17

4. Testing of the whole system (complete regression test)

A bare retest (1) as well as tests that execute only the area of modifications 
(2 and 3) are not enough because in software systems, simple local code 
changes can create side effects in any other, arbitrarily distant, system 
parts.

Changes can have 

unexpected side effects

If the test covers only altered or new code parts, it neglects the conse-
quences these alterations can have on unaltered parts. The trouble with 
software is its complexity. With reasonable cost, it can only be roughly 
estimated where such unwanted consequences can occur. This is particu-

17. This is a regression test in a broader sense, where changes also means new functionality 
(see the glossary].
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larly difficult for changes in systems with insufficient documentation or 
missing requirements, which, unfortunately, is often the case in old 
systems.

Full regression test In addition to retesting the corrected faults and testing changed func-
tions, all existing test cases should be repeated. Only in this case would the 
test be as safe as the testing done with the original program version. Such 
a complete regression test would also be necessary if the system environ-
ment has been changed because this could have an effect on every part of 
the system.

In practice, a complete regression test is usually too time consuming 
and expensive. Therefore, we are looking for criteria that can help to 
choose which old test cases can be omitted without losing too much infor-
mation. As always, in testing this means balancing risk and cost. The fol-
lowing test selection strategies are often used:

Selection of regression 

 test cases

■ Repeating only the high-priority tests according to the test plan
■ In the functional test, omitting certain variations (special cases)
■ Restricting the tests to certain configurations only (e.g., testing of the 

English product version only, testing of only one operating system 
version)

■ Restricting the test to certain subsystems or test levels

Excursion Generally, the rules listed here refer to the system test. On the lower test levels, 
regression test criteria can also be based on design or architecture documents (e.g., 
class hierarchy) or white box information. Further information can be found in [Kung 
95], [Rothermel 94], [Winter 98], and [Binder 99]. There, the authors not only describe 
special problems in regression testing object-oriented programs, they also describe 
the general principles of regression testing in detail.

3.8 Summary

■ The general V-model defines basic test levels: component test, integra-
tion test, system test, and acceptance test. It distinguishes between ver-
ification and validation. These general characteristics of good testing 
are applicable to any life cycle model:
• For every development step there is a corresponding test level
• The objectives of testing are specific for each test level
• The design of tests for a given test level should begin as early as pos-

sible, i.e., during the corresponding development activity
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• Testers should be involved in reviewing development documents as 
early as possible

• The number and intensity of the test levels must be tailored to the 
specific needs of the project

■ The V-model uses the fact that it is cheaper to repair defects a short 
time after they have been introduced. Thus, the V-model requires veri-
fication measures (for example, reviews) after ending every develop-
ment phase. This way, the “ripple effect” of defects (i.e., more defects) is 
minimized.

■ Component testing examines single software components. Integration 
testing examines the collaboration of these components. Functional 
and nonfunctional system testing examine the entire system from the 
perspective of the future users. In acceptance testing, the customer 
checks the product for acceptance respective to the contract and 
acceptance by users and operations personnel. If the system will be 
installed in many operational environments, then field tests provide an 
additional opportunity to get experience with the system by running 
preliminary versions.

■ Defect correction (maintenance) and further development (enhance-
ment) or incremental development continuously alter and extend the 
software product throughout its life cycle. All these altered versions 
must be tested again. A specific risk analysis should determine the 
amount of the regression tests.

■ There are several types of test with different objectives: functional test-
ing, nonfunctional testing, structure-based testing, and change-related 
testing.
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4 Static Test

Static investigations like reviews and tool-supported analysis of code and doc-
uments can be used very successfully for improving quality. This chapter pre-
sents the possibilities and techniques.

An often-underestimated examination method is the so-called static test, 
often named static analysis. Opposite to dynamic testing (see chapter 5), 
the test object is not provided with test data and executed but rather ana-
lyzed. This can be done using one or more persons for an intensive inves-
tigation or through the use of tools. Such an investigation can be used for 
all documents relevant for software development and maintenance. Tool-
supported static analysis is only possible for documents with a formal 
structure.

The goal of examination is to find defects and deviations from the 
existing specifications, standards to comply with, or even the project plan. 
An additional benefit of the results of these examinations is optimizing the 
development process. The basic idea is defect prevention: defects and 
deviations should be recognized as early as possible before they have any 
effect in the further development process where they would result in 
expensive rework.

4.1 Structured Group Evaluations

4.1.1 Foundations

Systematic use of the human 

ability to think and analyze

Reviews apply the human analytical capabilities to check and evaluate 
complex issues. Intensive reading and trying to understand the examined 
documents is the key.

There are different techniques for checking documents. They differ 
regarding the intensity, formality, necessary resources (staff and time), and 
goals.
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In the following sections, the different techniques are explained in 
more detail. Unfortunately, there is no uniform terminology concerning 
static analysis techniques. The terms used in this chapter are similar to the 
terms in the ISTQB syllabus and [IEEE 1028] (see the glossary in the 
appendix). Detailed descriptions can be found in [Freedman 90] and 
[Gilb 96]. 

4.1.2 Reviews

Review is a common generic term for all the different static analysis tech-
niques people perform as well as the term for a specific document exami-
nation technique.

Another term, often used with the same meaning, is ➞inspection. 
However, inspection is usually defined as a special, formal review using 
data collection and special rules [Fagan 76], [IEEE 1028], [Gilb 96]. All 
documents can be subjected to a review or an inspection, such as, for 
example, contracts, requirements definitions, design specifications, pro-
gram code, test plans, and manuals. Often, reviews provide the only pos-
sibility to check the semantics of a document. Reviews rely on the col-
leagues of the author to provide mutual feedback. Because of this, they are 
also called peer reviews.

A means for quality 

assurance

Reviews are an efficient means to assure the quality of the examined 
documents. Ideally, they should be performed as soon as possible after a 
document is completed to find mistakes and inconsistencies early. The 
verifying examinations at the end of a phase in the general V-model nor-
mally use reviews (so-called phase exit reviews). Eliminating defects and 
inconsistencies leads to improved document quality and positively influ-
ences the whole development process because development is continued 
with documents that have fewer or even no defects. 

Positive effects In addition to defect reduction, reviews have further positive effects:

■ Cheaper defect elimination. If defects are found and eliminated early, 
productivity in development increases because fewer resources are 
needed for defect identification and elimination later. These resources 
can instead be used for development.

■ Shortened development time.
■ If defects are recognized and corrected early, costs and time needed for 

executing the dynamic tests (see chapter 5) decrease because there are 
fewer defects in the test object.
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■ Because of the smaller number of defects, cost reduction can be 
expected during the whole product life. For example, a review may 
detect and clarify inconsistent and imprecise customer requests in the 
requirements. Foreseeable change requests after installation of the soft-
ware system can thus be avoided.

■ During operation of the system, a reduced failure rate can be expected.
■ As the examinations are done using a team of people, reviews lead to 

mutual learning. People improve their working methods, and reviews 
will thus lead to enhanced quality of later products.

■ Because several persons are involved in a review, a clear and under-
standable description of the facts is required. Often the necessity to for-
mulate a clear document lets the author find forgotten issues.

■ The whole team feels responsible for the quality of the examined 
object. The group will gain a common understanding of it.

Potential problemThe following problem can arise: In a badly moderated review session, the
author may get into a psychologically difficult situation, feeling that he as 
a person and not the document is subject to critical scrutiny. Motivation 
to subject documents to a review will thus be destroyed. Concretely 
expressing the review objective, which is improving the document, may be 
helpful. One book [Freedman 90] extensively discusses how to solve 
problems with reviews. 

Reviews costs and savingsThe costs caused by reviews are estimated to be 10–15% of the devel-
opment budget [Gilb 96, pg. 27]. The costs include the activities of the 
review process itself, analyzing the review results, and the effort put 
toward implementing them for process improvement. Savings are esti-
mated to be about 14–25% [Bush 90]. The extra effort for the reviews 
themselves is included in this calculation.

If reviews are systematically used and efficiently run, more than 70% 
of the defects in a document can be found and repaired before they are 
unknowingly inherited by the next work steps [Gilb 96]. Considering that 
the costs for defect removal substantially increase in later development steps, 
it is plausible that defect cost in development is reduced by 75% and more.

Hint■ Documents with a formal structure should be analyzed using a (static analysis) 
tool that checks this structure before the review. The tool can examine many as-
pects and can detect defects or deviations that do not need to be checked in a 
review (see section 4.2)
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Important success factors The following factors are decisive for success when using reviews (as sug-
gested by [IEEE 1028]):

■ Every review has a clear goal, which is formulated beforehand.
■ The “right” people are chosen as review participants based on the 

review objective as well as on their subject knowledge and skills.

4.1.3 The General Process

The term review describes a whole group of static examinations. Section 
4.1.5 describes the different types of reviews. The process underlying all 
reviews is briefly described here in accordance with the IEEE Standard for 
Software Reviews [IEEE 1028].

A review requires six work steps: planning, kick-off, individual prepa-
ration, review meeting, rework, and follow-up.

Planning

Reviews need planning Early, during overall planning, management must decide which docu-
ments in the software development process shall be subject to which 
review technique. The estimated effort must be included in the project 
plans. Several analyses show optimal checking time for reviewing docu-
ments and code [Gilb 96]. During planning of the individual review, the 
review leader selects technically competent staff and assembles a review 
team. In cooperation with the author of the document to be reviewed, she 
makes sure that the document is in a reviewable state, i.e., it is complete 
enough and reasonably finished. In formal reviews, entry criteria (and the 
corresponding exit criteria) may be set. A review should continue only 
after any available entry criteria has been checked.

Different perspectives 

increase the effect

A review is, in most cases, more successful when the examined docu-
ment is read from different viewpoints or when each person checks only 
particular aspects. The viewpoints or aspects to be used should be deter-
mined during review planning. A review might not involve the whole doc-
ument. Parts of the document in which defects constitute a high risk could 
be selected. A document may also be sampled only to make a conclusion 
about the general quality of the document.

If a kick-off meeting is necessary, the place and time must be agreed 
upon.
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Kick-Off

The kick-off (or overview) serves to provide those involved in the review 
with all of the necessary information. This can happen through a written 
invitation or a meeting when the review team is organized. The purpose is 
sharing information about the document to be reviewed (the review 
object) and the significance and the objective of the planned review. If the 
people involved are not familiar with the domain or application area of the 
review object, then a short introduction to the material may be arranged, 
and a description of how it fits into the application or environment may be 
provided.

Higher-level documents 

are necessary

In addition to the review object, those involved must have access to 
other documents. These include the documents that help to decide if a 
particular statement is wrong or correct. The review is done against these 
documents (e.g., requirements specification, design, guidelines, or stand-
ards). Such documents are also called base documents or baselines. Fur-
thermore, review criteria (for example, checklists) are very useful for sup-
porting a structured process.

For more formal reviews, the entry criteria might be checked. If entry 
criteria are not met, the review should be canceled, saving the organization 
time that would otherwise be wasted reviewing material that may be 
“immature,” i.e., not good enough.

Individual Preparation

Intensive study 
of the review object

The members of the review team must prepare individually for the review 
meeting. A successful review meeting is only possible with adequate pre-
paration. 

The reviewers intensively study the review object and check it against 
the documents given as a basis for it as well as against their own experi-
ence. They note deficiencies (even any potential defects), questions, or 
comments.

Review Meeting

A review leader or ➞moderator leads the review meeting. Moderator and 
participants should behave diplomatically (not be aggressive with each 
other) and contribute to the review in the best possible way.

The review leader must ensure that all experts will be able to express 
their opinion knowing that the product will be evaluated and not the 
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author. Conflicts should be prevented. If this is not possible, a solution for 
the situation should be found.

Usually, the review meeting has a fixed time limit. The objective is to 
decide if the review object has met the requirements and complies with the 
standards and to find defects. The result is a recommendation to accept, 
repair, or rewrite the document. All the reviewers should agree upon the 
findings and the overall result.

Rules for review meetings Here are some general rules for a review meeting:1

1. The review meeting is limited to two hours. If necessary, another 
meeting is called, but it should not take place on the same day.

2. The moderator has the right to cancel or stop a meeting if one or 
more experts (reviewers) don’t appear or if they are not sufficiently 
prepared.

3. The document (the review object) is subject to discussion, not the 
author:
• The reviewers have to watch their expressions and their way of ex-

pressing themselves.
• The author should not defend himself or the document. (That 

means, the author should not be attacked or forced into a defensive 
position. However, justification or explanation of the author’s deci-
sions is often seen as legitimate and helpful.)

4. The moderator should not also be a reviewer at the same time.
5. General style questions (outside the guidelines) shall not be discussed.
6. Solutions and discussing them isn’t a task of the review team.
7. Every reviewer must have the opportunity to adequately present his or 

her issues.
8. The protocol must describe the consensus of the reviewers.
9. Issues must not be written as commands to the author (additional con-

crete suggestions for improvement or correction are sometimes con-
sidered useful and sensible for quality improvement).

10. The issues should be weighted2 as follows:
• Critical defect (the review object is not suitable for its purpose, the 

defect must be corrected before the object is approved)

1. Some of these rules only apply for some of the review techniques described in [IEEE 
1028].

2. See section 6.6.3: Defects of severity class 2 and 3 can be seen as major defects and class 
4 and 5 as minor defects.
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• Major defect (the usability of the review object is affected, the defect 
must be corrected before the approval)

• Minor defect (small deviation, for example, spelling error or bad 
expression, hardly affects the usage)

• Good (flawless, this area should not be changed during rework).
11. The review team shall make a recommendation about the acceptance 

of the review object (see follow-up):
• Accept (without changes)
• Accept (with changes, no further review)
• Do not accept (further review or other checking measures are nec-

essary)
12. Finally, all the session participants should sign the protocol

Protocol and summary 

of results

The protocol contains a list of the issues/findings that were discussed dur-
ing the meeting. An additional review summary report should collect all 
important data about the review itself, i.e., the review object, the people 
involved, their roles (see section 4.1.4), a short summary of the most 
important issues, and the result of the review with the recommendation of 
the reviewers. In a more formal review, the fulfillment of formal exit crite-
ria may be documented. If there was no physical meeting and, for example, 
electronic communication was used instead, there should definitely be a 
protocol.

Rework

The manager decides whether to follow the recommendation or do some-
thing else. A different decision is, however, the sole responsibility of the 
manager. Usually, the author will eliminate the defects on the basis of the 
review results and rework the document. More formal reviews additionally 
require updating the defect status of every single found defect.

Follow-Up

The proper correction of defects must be followed up, usually by the man-
ager, moderator, or someone especially assigned this responsibility. 

Second reviewIf the result of the first review was not acceptable, another review 
should be scheduled. The process described here can be rerun, but usually 
it is done in an abbreviated manner, checking only changed areas.

The review meetings and their results should then be thoroughly eval-
uated to improve the review process, to adapt the used guidelines and 
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checklists to the specific conditions, and to keep them up-to-date. To 
achieve this, it is necessary to collect and evaluate measurement data.

Find and fix deficiencies in 

the software development 

process

Recurring, or frequently occurring, defect types point to deficiencies 
in the software development process or lack of technical knowledge of the 
people involved. Necessary improvements of the development process 
should be planned and implemented. Such defect types should be 
included in the checklists. Training must compensate for lack of technical 
knowledge.

For more formal reviews, the final activity is checking the exit criteria. 
If they are met, the review is finished. Otherwise, it must be determined 
whether rework can be done or if the whole review was unsuccessful.

4.1.4 Roles and Responsibilities

The description of the general approach included some information on 
roles and responsibilities. This section presents the people involved and 
their tasks.

Manager The manager selects the objects to be reviewed, assigns the necessary 
resources, and selects the review team.

Representatives of the management level should not participate in 
review meetings because management might evaluate the qualifications of 
the author and not the document. This would inhibit a free discussion 
among the review participants. Another reason is that the manager often 
lacks the necessary detailed understanding of technical documents. In a 
review, the technical content is checked, and thus the manager would not 
be able to add valuable comments. Management reviews of project plans 
and the like are a different thing. In this case, knowledge of management 
principles is necessary.

Moderator The moderator is responsible for executing the review. Planning, 
preparation, execution, rework, and follow-up should be done in such a 
way that the review objectives are achieved.

The moderator is responsible for collecting review data and issuing 
the review report.

This role is crucial for the success of the review. First and foremost, a 
moderator must be a good meeting leader, leading the meeting efficiently 
and in a diplomatic way. A moderator must be able to stop unnecessary 
discussions without offending the participants, to mediate when there are 
conflicting points of view, and be able to see “between the lines.” A mod-
erator must be neutral and must not state his own opinion about the 
review object.
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AuthorThe author is the creator of the document that is the subject of a
review. If several people have been involved in the creation, one person
should be appointed to be responsible; this person assumes the role of the 
author. The author is responsible for the review object meeting its review
entry criteria (i.e., that the document is reviewable) and for performing 
any rework required for meeting the review exit criteria.

It is important that the author does not interpret the issues raised on 
the document as personal criticism. The author must understand that a 
review is done only to help improve the quality of the product.

ReviewerThe reviewers, sometimes also called inspectors, are several (usually a 
maximum of five) technical experts that participate in the review meeting 
after necessary individual preparation.

They identify and describe problems in the review object. They should 
represent different viewpoints (for example, sponsor, requirements, 
design, code, safety, test). Only those viewpoints pertinent to the review of 
the product should be considered.

Some reviewers should be assigned specific review topics to ensure 
effective coverage. For example, one reviewer might focus on conform-
ance with a specific standard, another on syntax. The manager should 
assign these roles when planning the review.

The reviewers should also label the good parts in the document. Insuf-
ficient or deficient parts of the review object must be labeled accordingly, 
and the deficiencies must be documented for the author in such a way that 
they can be corrected. 

RecorderThe recorder (or scribe) shall document the issues (problems, action 
items, decisions, and recommendations) found by the review team.

The recorder must be able to record in a short and precise way, cor-
rectly capturing the essence of the discussion. This may not be easy 
because contributions are often not clearly or well expressed. Pragmatic 
reasons may make it meaningful to let the author be recorder. The author 
knows exactly how precisely and how detailed the contributions of the 
reviewers need to be recorded in order to have enough information for 
rework. 

Possible difficulties

Reasons for less successful 

reviews

Reviews may fail to achieve their objectives due to several causes:

■ The required persons are not available or do not have the required 
qualifications or technical skills. This may be solved by training or by 
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using qualified staff from consulting companies. This is especially true 
for the moderator, because he must have more psychological than tech-
nical skills. 

■ Inaccurate estimates during resource planning by management may 
result in time pressure, which then causes unsatisfactory review results. 
Sometimes, a less costly review type can bring relief.

■ If reviews fail due to lack of preparation, this is mostly because the 
wrong reviewers were chosen. If a reviewer does not realize the 
importance of the review and its great effect on quality improvement, 
then figures must be shown that prove the productive benefit of 
reviews. Other reasons for review failure may be lack of time and lack 
of motivation. 

■ A review can also fail because of missing or insufficient documenta-
tion. Prior to the review, it must be verified that all the needed docu-
ments exist and that they are sufficiently detailed. Only when this is the 
case should a review be performed.

■ The review process cannot be successful if there is lack of management 
support because the necessary resources will not be provided and the 
results will not be used for process improvement. Unfortunately, this is 
often the case.

Detailed advice for solving these problems is described in [Freedman 90].

4.1.5 Types of Reviews

Two main groups of reviews can be distinguished depending on the review 
object to be examined:

■ Reviews pertaining to products or intermediate products that have 
been created during the development process

■ Reviews that analyze the project itself or the development process

Excursion Reviews in the second group are called ➞management reviews3 [IEEE 1028] or pro-
ject reviews. Their objective is to analyze the project itself or the development pro-
cess. For example, such a review determines if plans and rules are followed, if the 
necessary work tasks are executed, or the effectiveness of process improvements or 
changes.

3. In [ISO 9000] the management review is defined in a more narrow way as “a formal 
evaluation by top management of the status and adequacy of the quality system in 
relation to the quality policy and objectives.”
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The project as a whole and determining its current state are the objects of such 
a review. The state of the project is evaluated with respect to technical, economic, 
time, and management aspects.

Management reviews are often performed when reaching a milestone in the pro-
ject, when completing a main phase in the software development process, or as a 
“postmortem” analysis to learn from the finished project.

In the following sections, the first group of reviews is described in more 
detail. We can distinguish between the following review types: 
➞walkthrough, inspection, ➞technical review, and ➞informal review. In 
the descriptions, the focus is on the main differences between the particu-
lar review type and the basic review process (see section 4.1.3).

Walkthrough

A walkthrough4 is a manual, informal review method with the purpose of 
finding defects, ambiguities, and problems in written documents. The 
author presents the document to the reviewers in a review meeting.

Educating an audience regarding a software product is mentioned in 
[IEEE 1028] as a further purpose of walkthroughs. Further objectives of 
walkthroughs are to improve the product, to discuss alternative imple-
mentations, and to evaluate conformance to standards and specifications.

The main emphasis of a walkthrough is the review meeting (without a 
time limit). There is less focus on preparation compared to the other types 
of reviews; it can even be omitted sometimes.5

Discussion of typical usage 

situations

In most cases, typical usage situations, also called scenarios, will be 
discussed. Test cases may even be “played through.” The reviewers try to 
find possible errors and defects by spontaneously asking questions.

Suitable for small 

development teams

The technique is useful for small teams of up to five persons. It does 
not require a lot of resources because preparation and follow-up are minor 
or sometimes not even required. The walkthrough is useful for checking 
“noncritical” documents.

The author chairs the meeting and therefore has a great amount of 
influence. This can have a detrimental effect on the result if the author 
impedes an intensive discussion of the critical parts of the review object.

The author is responsible for follow-up; there is no more checking.

4. Also called “structured walkthrough”
5. According to [IEEE 1028], the participants should receive the documents in advance 

and should have prepared for the meeting.
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Before the meeting the reviewers prepare, the results are written in a 
protocol, and someone other than the author records the findings. In 
practice there is a wide variation from informal to formal walkthroughs.

Objectives The main objectives of a walkthrough are mutual learning, develop-
ment of an understanding of the review object, and error detection.

Inspection

Formal process The inspection is the most formal review. It follows a formal, prescribed 
process. Every person involved, usually people who work directly with the 
author, has a defined role. Rules define the process. The reviewers use 
checklists containing criteria for checking the different aspects.

The goals are finding unclear items and possible defects, measuring 
review object quality, and improving the quality of the inspection process 
and the development process. The concrete objectives of each individual 
inspection are determined during planning. The inspectors (reviewers) 
prepare for only a specific number of aspects that will be examined. Before 
the inspection begins, the inspection object is formally checked with 
respect to entry criteria and reviewability. The inspectors prepare them-
selves using procedures or standards and checklists.

Traditionally, this method of reviewing has been called design in-
spection or code or software inspection. The name points to the docu-
ments that are subject to the inspection (see [Fagan 76]). However, in-
spections can be used for any document in which formal evaluation 
criteria exist.

Inspection meeting A moderator leads the meeting. The inspection meeting follows this 
agenda:

■ The moderator first presents the participants and their roles as well as a 
short introduction to the topic of the inspection object.

■ The moderator asks the participants if they are adequately prepared. In 
addition, the moderator might ask how much time the reviewer used to 
prepare and how many and how severe were the issues found.

■ The group may review the checklists chosen for the inspection in order 
to make sure everyone is well prepared for the meeting.

■ Issues of a general nature concerning the whole inspection object are 
discussed first and written into the protocol.
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■ A reviewer presents6 the contents of the inspection object quickly and 
logically. If it’s considered useful, passages can also be read aloud.

■ The reviewers ask questions during this procedure, and the selected 
aspects of the inspection are thoroughly discussed. The author answers 
questions. The moderator makes sure that a list of issues is written. If 
author and reviewer disagree about an issue, a decision is made at the 
end of the meeting.

■ The moderator must intervene if the discussion is getting out of con-
trol. The moderator also makes sure the meeting covers all aspects to 
be evaluated as well as the whole document. The moderator makes sure 
the recorder writes down all the issues and ambiguities that are 
detected.

■ At the end of the meeting, all recorded items are reviewed for com-
pleteness.

■ Discussions are conducted to resolve disagreements, for example, 
whether or not something can be classified a defect. If no resolution is 
reached, this is written in the protocol. There should be no discussion 
on how to solve the issues. Any discussion should be limited in time.

■ Finally, the reviewers judge the inspection object as a whole.
■ They decide if it must be reworked or not. In inspections, follow-up 

and reinspection are formally regulated.

Additional assessment of the 

development and inspection 

process

In an inspection, data are also collected for general quality assessment of 
the development process and the inspection process. Therefore, an inspec-
tion also serves to optimize the development process, in addition to assess-
ing the inspected documents. The collected data are analyzed in order to 
find causes for weaknesses in the development process. After process 
improvement, comparing the collected data before the change to the cur-
rent data checks the improvement effect.

ObjectiveThe main objective of inspection is defect detection or, more precisely, 
the detection of defects causes and defects.

Technical Review

Does the review object fulfill 

its purpose?

In a technical review, the focus is compliance of the document with the spec-
ification, fitness for its intended purpose, and compliance to standards. 

6. Often, reviewers are called inspectors. [IEEE 1028] calls the presenting reviewer the 
reader.
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During preparation, the reviewers check the review object with respect to 
the specified review criteria.

Technical experts as 

reviewers

The reviewers must be technically qualified. Some of them should not 
be project participants in order to avoid “project blindness.” Management 
does not participate. Basis for the review is only the “official” specification 
and the specified criteria for the review. The reviewers write down their 
comments and pass them to the moderator before the review meeting.7
The moderator (who ideally is properly trained) sorts these findings based 
on their presumed importance. During the review meeting, only selected 
remarks are discussed.

High preparation effort Most of the effort is in preparation. The author does not normally 
attend the meeting. During the meeting, the recorder notes all the issues 
and prepares the final documentation of the results.

The review result must be approved unanimously by all involved 
reviewers and signed by everyone. Disagreement should be noted in the 
protocol. It is not the job of the review participants to decide on the con-
sequences of the result; that is the responsibility of management. If the 
review is highly formalized, entry and exit criteria of the individual review 
steps may also be defined.

In practice, very different versions of the technical review are found, 
from a very informal to a strictly defined, formal process.

Objective Discussion is expressly requested during a technical review. Alterna-
tive approaches should be considered and decisions made. The specialists 
may solve the technical issues. The conformity of the review object with its 
specifications and applicable standards can be assessed. Technical reviews 
can, of course, reveal errors and defects.

Informal Review

The informal review is a light version of a review. However, it more or less 
follows the general procedure for reviews (see section 4.1.3) in a simplified 
way. In most cases, the author initiates an informal review. Planning is 
restricted to choosing reviewers and asking them to deliver their remarks 
at a certain point in time. Often, there is no meeting or exchange of the 
findings. In such cases, the review is just a simple author-reader-cycle. The 
informal review is a kind of cross reading by one or more colleagues. The 
results need not be explicitly documented; a list of remarks or the revised 

7. In [IEEE 1028], this also applies to inspection.
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document is in most cases enough. Pair programming, buddy testing, code 
swapping, and the like are types of informal review. The informal review 
is very common and highly accepted due to the minimal effort required.

ObjectiveAn informal review involves relatively little effort and low costs. 
Discussion and exchange of information among colleagues are welcome
“side effects” of the process.

Selection Criteria

Selecting the type of reviewThe type of review that should be used depends very much on how thor-
ough the review needs to be and the effort that can be spent. It also 
depends on the project environment; we cannot give specific recommen-
dations. The decision about what type of review is appropriate must be 
made on a case-by-case basis. Here are some questions and criteria that 
should help:

■ The form in which the results of the review should be presented can 
help select the review type. Is detailed documentation necessary, or is it 
good enough to present the results informally?

■ Will it be difficult or easy to find a date and time for the review? It can 
be difficult to bring together five or seven technical experts for one or 
more meetings.

■ Is it necessary to have technical knowledge from different disciplines?
■ What level (how deep) of technical knowledge is required for the 

review object? How much time will the reviewers need?
■ Is the preparation effort appropriate with respect to the benefit of the 

review (the expected result)?
■ How formally written is the review object? Is it possible to perform 

tool-supported analyses?
■ How much management support is available? Will management curtail 

reviews when the work is done under time pressure?

Testers as reviewersIt makes sense to use testers as reviewers. The reviewed documents are 
usually used as the test basis to design test cases. Testers know the docu-
ments early and they can design test cases early. By looking at documents 
from a testing point of view, testers may check new quality aspects, such as 
testability.
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Notes

As we said in the beginning of the chapter, there are no uniform descrip-
tions of the individual types of review. There is no clear boundary between 
the different review types, and the same terms are used with different 
meanings.

Company-specific reviews Generally, it can be said that the types of reviews are very much deter-
mined by the organization that uses them. Reviews are tailored to the spe-
cific needs and requirements of a project. This has a positive influence on 
their efficiency.

A cooperative collaboration between the people involved in software 
development can be considered beneficial to quality. If people examine each 
other’s work results, defects and ambiguities can be revealed. From this 
point of view, pair programming, as suggested in ➞Extreme Programming, 
can be regarded as a permanent “two-person-review” [Beck 00].

With distributed project teams, it might be hard to organize review 
meetings. These days, reviews can be in the form of structured discussion 
by Internet, videoconferencing, telephone conference calls, etc.

Success Factors

The following factors are crucial for review success and must be con-
sidered:

■ Reviews help improve the examined documents. Detecting issues, such 
as unclear points and deviations, is a wanted and required effect. The 
issues must be formulated in a neutral and objective way.

■ Human and psychological factors have a strong influence in a review. A 
review must be conducted in an atmosphere of trust. The participants 
must be sure that the outcome will not be used to evaluate them (for 
example, as a basis of their next job assessment). It’s important that the 
author of the reviewed document has a positive experience. 

■ Testers should be used as reviewers. They contribute to the review by 
finding (testing) issues. When they participate in reviews, testers learn 
about the product, which enables them to prepare tests earlier and in a 
better way.

■ The type and level of the examined document, and the state of knowl-
edge of the participating people, should be considered when choosing 
the type of review to use.

■ Checklists and guidelines should be used to help in detecting issues 
during reviews.
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■ Training is necessary, especially for more formal types of reviews, such 
as inspections.

■ Management can support a good review process by allocating enough 
resources (time and personnel) for document reviews in the software 
development process.

■ Continuous learning from executed reviews improves the review pro-
cess and thus is important.

4.2 Static Analysis
Analysis without executing 

the program

The objective of static analysis is, as with reviews, to reveal defects or 
defect-prone parts in a document. However, in static analysis, tools do the 
analysis. For example, even spell checkers can be regarded as a form of 
➞static analyzers because they find mistakes in documents and therefore 
contribute to quality improvement. 

The term static analysis points to the fact that this form of checking 
does not involve an execution of the checked objects (of a program). An 
additional objective is to derive measurements, or metrics, in order to 
measure and prove the quality of the object.

Formal documentsThe document to be analyzed must follow a certain formal structure 
in order to be checked by a tool. Static analysis makes sense only with the
support of tools. Formal documents can note, for example, the technical 
requirements, the software architecture, or the software design. An exam-
ple is the modeling of class diagrams in UML.8 Generated outputs in
HTML9 or XML10 can also be subjected to tool-supported static analysis.
Formal models developed during the design phases can also be analyzed 
and inconsistencies can be detected. Unfortunately, in practice, the pro-
gram code is often the one and only formal document in software devel-
opment that can be subjected to static analysis.

Developers typically use static analysis tools before or during compo-
nent or integration testing to check if guidelines or programming conven-
tions are adhered to. During integration testing, adherence to interface 
guidelines is analyzed.

Analysis tools often produce a long list of warnings and comments. In 
order to effectively and efficiently use the tools, the mass of generated 

8. Unified Modeling Language [URL: UML]
9. HyperText Markup Language [URL: HTML]
10. Extensible Markup Language [URL: XML]
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information must be handled intelligently; for example, by configuring the 
tool. Otherwise, the tools might be avoided.

Static analysis and reviews Static analysis and reviews are closely related. If a static analysis is per-
formed before the review, a number of defects and deviations can be found 
and the number of the aspects to be checked in the review clearly 
decreases. Due to the fact that static analysis is tool supported, there is 
much less effort involved than in a review.

Hint ■ If documents are formal enough to allow tool-supported static analysis, then it 
should definitely be performed before the document reviews because faults and 
deviations can be detected conveniently and cheaply and the reviews can be 
shortened.

■ Generally, static analysis should be used even if no review is planned. Each time 
a discrepancy is located and removed, the quality of the document increases.

Not all defects can be found using static testing, though. Some defects 
become apparent only when the program is executed (that means at run-
time) and cannot be recognized before. For example, if the value of the 
denominator in a division is stored in a variable, that variable can be 
assigned the value zero. This leads to a failure at runtime. In static analysis, 
this defect cannot easily be found, except for when the variable is assigned 
the value zero by a constant having zero as its value. 

All possible paths through the operations may be analyzed, and the 
operation can be flagged as potentially dangerous. On the other hand, 
some inconsistencies and defect-prone areas in a program are difficult to 
find by dynamic testing. Detecting violation of programming standards or 
use of forbidden error-prone program constructs is possible only with 
static analysis (or reviews).

The compiler is an 

analysis tool

All compilers carry out a static analysis of the program text by check-
ing that the correct syntax of the programming language is used. Most 
compilers provide additional information, which can be derived by static 
analysis (see section 4.2.1). In addition to compilers, there are other tools 
that are so-called analyzers. These are used for performing special analy-
ses or groups of analyses.

The following defects and dangerous constructions can be detected by 
static analysis:

■ Syntax violations
■ Deviations from conventions and standards
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■ ➞Control flow anomalies
■ ➞Data flow anomalies

Finding security problemsStatic analysis can be used to detect security problems. Many security holes 
occur because certain error-prone program constructs are used or neces-
sary checks are not done. Examples are lack of buffer overflow protection 
and failing to check that input data may be out of bounds. Tools can find 
such deficiencies because they often search and analyze certain patterns.

4.2.1 The Compiler as a Static Analysis Tool

Violation of the programming language syntax is detected by static analysis 
and reported as a fault or warning. Many compilers also generate further 
information and perform other checks: 

■ Generating a cross-reference list of the different program elements 
(e.g., variables, functions)

■ Checking for correct data type usage by data and variables in program-
ming languages with strict typing

■ Detecting undeclared variables
■ Detecting code that is not reachable (so-called ➞dead code)
■ Detecting overflow or underflow of field boundaries (with static 

addressing)
■ Checking interface consistency
■ Detecting the use of all labels as jump start or jump target

The information is usually provided in the form of lists. A result reported 
as “suspicious” by the tool is not always a fault. Therefore, further investi-
gation is necessary.

4.2.2 Examination of Compliance to Conventions 
and Standards

Compliance to conventions and standards can also be checked with tools. 
For example, tools can be used to check if a program follows programming 
regulations and standards. This way of checking takes little time and 
almost no personnel resources. In any case, only guidelines that can be ver-
ified by tools should be accepted in a project. Other regulations usually 
prove to be bureaucratic waste anyway. Furthermore, there often is an 
additional advantage: if the programmers know that the program code is 
checked for compliance to the programming guidelines, their willingness 



98 4 Static Test
to work according to the guidelines is much higher than without an auto-
matic test.

4.2.3 Execution of Data Flow Analysis

Checking the use of data ➞Data flow analysis is another means to reveal defects. Here, the usage of 
data on ➞paths through the program code is checked. It is not always pos-
sible to decide if an issue is a defect. Instead, we speak of ➞anomalies, or 
data flow anomalies. An anomaly is an inconsistency that can lead to fail-
ure but does not necessarily do so. An anomaly may be flagged as a risk.

An example of a data flow anomaly is code that reads (uses) variables 
without previous initialization or code that doesn’t use the value of a vari-
able at all. The analysis checks the usage of every single variable. The fol-
lowing three types of usage or states of variables are distinguished:

■ Defined (d): The variable is assigned a value.
■ Referenced (r): The value of the variable is read and/or used.
■ Undefined (u): The variable has no defined value.

Data flow anomalies We can distinguish three types of data flow anomalies:

■ ur-anomaly: An undefined value (u) of a variable is read on a program 
path (r).

■ du-anomaly: The variable is assigned a value (d) that becomes invalid/
undefined (u) without having been used in the meantime.

■ dd-anomaly: The variable receives a value for the second time (d) and 
the first value had not been used (d).

Example of anomalies We will use the following example (in C++) to explain the different anomalies. 
The following function is supposed to exchange the integer values of the para-
meters Max and Min with the help of the variable Help, if the value of the variable
Min is greater that the value of the variable Max: 

void exchange (int& Min, int& Max) {
int Help;

if (Min > Max) {
Max = Help;
Max = Min;
Help = Min;
}

}
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After the usage of the single variables is analyzed, the following anomalies can be 
detected:
■ ur-anomaly of the variable Help: The domain of the variable is limited to the 

function. The first usage of the variable is on the right side of an assignment. At 
this time, the variable still has an undefined value, which is referenced there. 
There was no initialization of the variable when it was declared (this anomaly 
is also recognized by usual compilers, if a high warning level is activated).

■ dd-anomaly of the variable Max: The variable is used twice consecutively on the 
left side of an assignment and therefore is assigned a value twice. Either the first 
assignment can be omitted or the programmer forgot that the first value (before 
the second assignment) has been used.

■ du-anomaly of the variable Help: In the last assignment of the function, the 
variable Help is assigned another value that cannot be used anywhere because 
the variable is valid only inside the function.

Data flow anomalies are 

usually not that obvious

In this example, the anomalies are obvious. But it must be considered that 
between the particular statements that cause these anomalies there could 
be an arbitrary number of other statements. The anomalies would not be 
as obvious anymore and could easily be missed by a manual check such as, 
for example, a review. A tool for analyzing data flow can, however, detect 
the anomalies.

Not every anomaly leads directly to an incorrect behavior. For exam-
ple, a du-anomaly does not always have direct effects; the program could 
still run properly. The question arises why this particular assignment is at 
this position in the program, just before the end of the block where the 
variable is valid. Usually, an exact examination of the program parts 
where trouble is indicated is worthwhile and further inconsistencies can 
be discovered.

4.2.4 Execution of Control Flow Analysis

Control flow graphIn figure 4-1, a program structure is represented as a control flow graph. 
In this directed graph, the statements of the program are represented with 
nodes. Sequences of statements are also represented with a single node 
because inside the sequence there can be no change in the course of pro-
gram execution. If the first statement of the sequence is executed, the 
others are also executed.

Changes in the course of program execution are made by decisions, 
such as, for example, in IF statements. If the calculated value of the condi-
tion is true, then the program continues in the part that begins with 
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THEN. If the condition is false, then the ELSE part is executed. Loops lead 
to previous statements, resulting in repeated execution of a part of the 
graph.

Control flow anomalies Due to the clarity of the control flow graph, the sequences through the 
program can easily be understood and possible anomalies can be detected. 
These anomalies could be jumps out of a loop body or a program structure 
that has several exits. They may not necessarily lead to failure, but they are 
not in accordance with the principles of structured programming. It is 
assumed that the graph is not generated manually but that it is generated 
by a tool that guarantees an exact mapping of the program text to the 
graph.

If parts of the graph or the whole graph are very complex and the rela-
tions, as well as the course of events, are not understandable, then the pro-
gram text should be revised, because complex sequence structures often 
bear a great risk of being wrong.

Excursion: 
Predecessor-successor 

table

In addition to graphs, a tool can generate predecessor-successor tables that show 
how every statement is related to the other statements. If a statement does not have 
a predecessor, then this statement is unreachable (so-called dead code). Thus a 
defect or at least an anomaly is detected. The only exceptions are the first and last 
statements of a program: They can legally have no predecessor or successor. For 
programs with several entrance and/or exit points, the same applies.

4.2.5 Determining Metrics

Measuring of quality 

characteristics

In addition to the previously mentioned analyses, static analysis tools pro-
vide measurement values. Quality characteristics can be measured with 
measurement values, or metrics. The measured values must be checked, 
though, to see if they meet the specified requirements [ISO 9126]. An over-
view of currently used metrics can be found in [Fenton 91].

The definition of metrics for certain characteristics of software is 
based on the intent to gain a quantitative measure of software whose 
nature is abstract. Therefore, a metric can only provide statements con-
cerning the one aspect that is examined, and the measurement values that 
are calculated are only interesting in comparison to numbers from other 
programs or program parts that are examined.

Cyclomatic number In the following, we’ll take a closer look at a certain metric: the 
➞cyclomatic number (McCabe number [McCabe 76]). The cyclomatic
number measures the structural complexity of program code. The basis of
this calculation is the control flow graph.
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For a control flow graph (G) of a program or a program part, the cyc-
lomatic number can be computed like this:11

v(G) = e - n + 2

v(G) = cyclomatic number of the graph G
e = number of edges of the control flow graph
n = number of nodes of the control flow graph

Example for computing 
the cyclomatic number

A program part is represented by the graph shown in figure 4-1. It is a function 
that can be called. Thus, the cyclomatic number can be calculated like this:

v (G) = e - n + 2 = 17 - 13 + 2 =6
e = number of edges in the graph = 17
n = number of nodes in the graph = 13 

Figure 4–1
Control flow graph for
 the calculation of
 the cyclomatic number 
(identical to figure 2–2)

The value of 6 is, according to McCabe, acceptable and in the middle of the range. 
He assumes that a value higher than 10 cannot be tolerated and rework of the 
program code has to take place.

11. The original formula is v(G) = e - n + 2p, where p is the number of connected program 
parts. We use p=1 because there is only one part that is analyzed.
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The cyclomatic number 

gives information about 

the testing effort

The cyclomatic number can be used to estimate the testability and the 
maintainability of a particular program part. The cyclomatic number spec-
ifies the number of independent paths in the program part.12 If 100% 
branch coverage (see section 5.2.2) is intended, then all these independent 
paths of the control flow graph have to be executed at least once. Therefore, 
the cyclomatic number provides important information concerning the 
volume of the test. 

Understanding a program is essential for its maintenance.
The higher the value of the cyclomatic number, the more difficult it is 

to understand the flow in a certain program part.

Excursion The cyclomatic number has been very much discussed since its publication. One of 
its drawbacks is that the complexity of the conditions, which lead to the selection of 
the control flow, is not taken into account. It does not matter for the calculation of the 
cyclomatic number whether a condition consists of several partial atomic conditions 
with logical operators or is a single condition. Many extensions and adaptations have 
been published concerning this.

4.3 Summary

■ Several pairs of eyes see more than a single pair of eyes. This is also true 
in software development. This is the main principle for the reviews that 
are performed for checking and for improving quality. Several people 
inspect the documents and discuss them in a meeting and the results 
are recorded.

■ A fundamental review process consists of the following activities: plan-
ning, kick-off, preparation, review meeting, rework, and follow-up. 
The roles of the participants are manager, moderator, author, reviewer, 
and recorder.

■ There are several types of reviews. Unfortunately, the terminology is 
defined differently in all literature and standards.

■ The walkthrough is an informal procedure where the author presents 
her document to the reviewers in the meeting. There is little prepara-
tion for the meeting. The walkthrough is especially suitable for small 
development teams, for discussing alternatives, and for educating peo-
ple in the team.

■ The inspection is the most formal review type. Preparation is done 
using checklists, there are defined entry and exit criteria, and a trained 

12. This means all complete linearly independent paths.
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moderator chairs the meeting. The objective of inspections is checking 
the quality of the document and improvement of development, the 
development process, and the inspection process itself.

■ In the technical review, the individual reviewers’ results must be given 
to the review leader prior to the meeting. The meeting is then prior-
itized by assumed importance of the individual issues. The evaluators 
usually have access to the specifications and other documentation only. 
The author can remain anonymous.

■ The informal review is not based on a formal procedure. The form in 
which the results have to be presented is not prescribed. Because this 
type of review can be performed with minimal effort, its acceptance is 
very high, and in practice it is commonly used.

■ Generally, the specific environment, i.e., the organization and project 
for which the review is used, determines the type of review to be used. 
Reviews are tailored to meet specific needs and requirements, which 
increases their efficiency. It is important to establish a cooperative and 
collaborative atmosphere among the people involved in the develop-
ment of the software.

■ In addition to the reviews, a lot of checks can be done for documents 
that have a formalized structure. These checks are called static analy-
ses. The test object is not executed during a static analysis.

■ The compiler is the most common analysis tool and reveals syntax 
errors in the program code. Usually, compilers provide even more 
checking and information.

■ Analysis tools that are dependent on programming language can also 
show violation of standards and other conventions.

■ Tools are available for detecting anomalies in the data and control flows 
of the program. Useful information about control and data flows is 
generated, which often points to parts that could contain defects.

■ Metrics are used to measure quality. One such metric is the cyclomatic 
number, which calculates the number of independent paths in the 
checked program. It is possible to gain information on the structure 
and the testing effort.

■ Generally, static analyses should be performed first, before a document 
is subjected to review. Static analyses provide a relatively inexpensive 
means to detect defects and thus make the reviews less expensive.
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5 Dynamic Analysis – 
Test Design Techniques

This chapter describes techniques for testing software by executing the test 
objects on a computer. It presents the different techniques, with examples, for 
specifying test cases and for defining test exit criteria.

These ➞test design techniques are divided into three categories: black 
box testing, white box testing, and experience-based testing.

Execution of the test object 

on a computer

Usually, testing of software is seen as the execution of the test object on a 
computer. For further clarification, the phrase ➞dynamic analysis is used. 
The test object (program) is fed with input data and executed. To do this, 
the program must be executable. In the lower test stages (component and 
integration testing), the test object cannot be run alone but must be 
embedded into a test harness or test bed to obtain an executable program 
(see figure 5-1).

A test bed is necessary The test object will usually call different parts of the program through 
predefined interfaces. These parts of the program are represented by 
placeholders called stubs when they are not yet implemented and there-
fore aren’t ready to be used or if they should be simulated for this particu-
lar test of the test object. Stubs simulate the input/output behavior of the 
part of the program that usually would be called by the test object.1

1. In contrast to stubs, with their rudimental functionality, the ➞dummy or ➞mock-up 
offers additional functionality, often near the final functionality for testing purposes. A 
mock-up usually has more functionality than a dummy.



106 5 Dynamic Analysis – Test Design Techniques
Testobjekt

Testtreiber

Laufzeitumgebung, 
Analysewerkzeuge, Monitore

Ausgaben

Vergleich 
& Protokoll

Testfall 1

Platzhalter

Testfall 2 ... Testfall n

Stub 1

Stub 2

...

Stub k

PoC

PoO
Test object

Test driver

Run time environment,
analysis tools, monitors

Test output

Comparison
& protocol

Test case 1

Test stubs

Test case 2 ... Test case n

Stub 1

Stub 2

...

Stub k

PoC

PoO

 

Figure 5–1
Test bed

Furthermore, the test bed must supply the test object with input data. In 
most cases, it is necessary to simulate a part of the program that is sup-
posed to call the test object. A test driver does this. Driver and stub com-
bined establish the test bed. Together, they constitute an executable pro-
gram with the test object itself.

The tester must often create the test bed, or the tester must expand or 
modify standard (generic) test beds, adjusting them to the interfaces of the 
test object. Test bed generators can be used as well (see section 7.1.4). An 
executable test object makes it possible to execute the dynamic test.

Systematic approach for 

determining the test cases

The objective of testing is to show that the implemented test object 
fulfills specified requirements as well as to find possible faults and failures. 
With as little cost as possible, as many requirements as possible should be 
checked and as many failures as possible should be found. This goal 
requires a systematic approach to test case design. Unstructured testing 
“from your gut feeling” does not guarantee that as many as possible, 
maybe even all, different situations supported by the test object are tested.

Step wise approach The following steps are necessary to execute the tests:

■ Determine conditions and preconditions for the test and the goals to be 
achieved.

■ Specify the individual test cases.
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■ Determine how to execute the tests (usually chaining together several 
test cases).

This work can be done very informally (i.e., undocumented) or in a formal 
way as described in this chapter. The degree of formality depends on sev-
eral factors, such as the application area of the system (for example, safety-
critical software), the maturity of the development and test process, time 
constraints, and knowledge and skill level of the project participants, just 
to mention a few.

Conditions, preconditions, 

and goals

At the beginning of this activity, the test basis is analyzed to determine 
what must be tested (for example, that a particular transaction is correctly 
executed). The test objectives are identified, for example, demonstrating 
that requirements are met. The failure risk should especially be taken into 
account. The tester identifies the necessary preconditions and conditions 
for the test, such as what data should be in a database.

TraceabilityThe traceability between specifications and test cases allows an analy-
sis of the impact of the effects of changed specifications on the test, that is, 
the necessity for creation of new test cases and removal or change of exist-
ing ones. Traceability also allows checking a set of test cases to see if it cov-
ers the requirements. Thus, coverage can be a criterion for test exit.

In practice, the number of test cases can soon reach hundreds or thou-
sands. Only traceability makes it possible to identify the test cases that are 
affected by specification changes.

➞Test case specificationPart of the specification of the individual test cases is determining test 
input data for the test object. They are determined using the methods 
described in this chapter. However, the preconditions for executing the 
test case, as well as the expected results and expected postconditions, are 
necessary for determining if there is a failure (for detailed descriptions, see 
[IEEE 829]).

Determining expected result 

and behavior

The expected results (output, change of internal states, etc.) should be 
determined and documented before the test cases are executed. Other-
wise, an incorrect result can easily be interpreted as correct, thus causing 
a failure to be overlooked.

Test case executionIt does not make much sense to execute an individual test case. Test 
cases should be grouped in such a way that a whole sequence of test cases 
is executed (test sequence, test suite or test scenario). Such a test sequence 
is documented in the ➞test procedure specifications or test instructions. 
This document commonly groups the test cases by topic or by test objec-
tives. Test priorities and technical and logical dependencies between the 
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tests and regression test cases should be visible. Finally, the test execution 
schedule (assigning tests to testers and determining the time for execu-
tion) is described in a ➞test schedule document.

To be able to execute a test sequence, a ➞test procedure or ➞test 
script is required. A test script contains instructions for automatically exe-
cuting the test sequence, usually in a programming language or a similar 
notation, the test script may contain the corresponding preconditions as 
well as instruction for comparing the actual and expected results. JUnit is 
an example of a framework that allows easy programming of test scripts in 
Java [URL: xunit].

Black box and white box 

 test design techniques

Several different approaches are available for designing tests. They 
can roughly be categorized into two groups: black box techniques2 and 
white box techniques3. To be more precise, they are collectively called test 
case design techniques because they are used to design the respective test 
cases.

In black box testing, the test object is seen as a black box. Test cases are 
derived from the specification of the test object; information about the 
inner structure is not necessary or available. The behavior of the test 
object is watched from the outside (the ➞Point of Observation, or PoO, is 
outside the test object). The operating sequence of the test object can only 
be influenced by choosing appropriate input test data or by setting appro-
priate preconditions. The ➞Point of Control (PoC) is also located outside 
of the test object. Test cases are designed using the specification or the 
requirements of the test object. Often, formal or informal models of the 
software or component specification are used. Test cases can be systemat-
ically derived from such models.

In white box testing, the program text (code) is used for test design. 
During test execution, the internal flow in the test object is analyzed (the 
Point of Observation is inside the test object). Direct intervention in the 
execution flow of the test object is possible in special situations, such as, 
for example, to execute negative tests or when the component’s interface is 
not capable of initiating the failure to be provoked (the Point of Control 
can be located inside the test object). Test cases are designed with the help 
of the program structure (program code or detailed specification) of the 
test object (see figure 5-2). The usual goal of white box techniques is to 

2. Black box techniques are also called requirements-based testing techniques
3. White box techniques are sometimes called glass box or open box techniques because it 

is impossible to see through a white box. However, these terms are not used often.
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achieve a specified coverage; for example, 80% of all statements of the test 
object shall be executed at least once. Extra test cases may be systemati-
cally derived to increase the degree of coverage.

PoC and PoO “outside”
the test object

PoC and/or PoO “inside”
the test object

Black box approach White box approach
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Figure 5–2
PoC and PoO at black box 
and white box techniques

White box testing is also called structural testing because it considers the 
structure (component hierarchy, control flow, data flow) of the test object. 
The black box testing techniques are also called functional, specification-
based, or behavioral testing techniques because the observation of the 
input/output behavior is the main focus [Beizer 95]. The functionality of 
the test object is the center of attention. 

White box testing can be applied at the lower levels of the testing, i.e., 
component and integration test. A system test oriented on the program 
text is normally not very useful. Black box testing is predominantly used 
for higher levels of testing even though it is reasonable in component tests. 
Any test designed before the code is written (test-first programming, test-
driven development) is essentially applying a black box technique.

Most test methods can clearly be assigned to one of the two categories. 
Some have elements of both and are sometimes called gray box techniques.

In the sections 5.1 and 5.2, black box and white box techniques are 
described in detail. 

Intuitive test case designIntuitive and experience-based testing is usually black box testing. It is 
described in a special section (section 5.3) because it is not a systematic 
technique. This test design technique uses the knowledge and skill of peo-
ple (testers, developers, users, stakeholders) to design test cases. It also 
uses knowledge about typical or probable faults and their distribution in 
the test object.
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5.1 Black Box Testing Techniques

In black box testing, the inner structure and design of the test object is 
unknown or not considered. The test cases are derived from the specifica-
tion, or they are already available as part of the specification (“specification 
by example”). Black box techniques are also called specification based 
because they are based on specifications (of requirements). A test with all 
possible input data combinations would be a complete test, but this is unre-
alistic due to the enormous number of combinations (see section 2.1.4). 
During test design, a reasonable subset of all possible test cases must be 
selected. There are several methods to do that, and they will be shown in 
the following sections.

5.1.1 Equivalence Class Partitioning

Input domains are divided 

into equivalence classes

The domain of possible input data for each input data element is divided 
into ➞equivalence classes (equivalence class partitioning). An equivalence 
class is a set of data values that the tester assumes are processed in the same 
way by the test object. Testing one representative of the equivalence class 
is considered sufficient because it is assumed that for any other input value 
of the same equivalence class, the test object will show the same reaction 
or behavior. Besides equivalence classes for correct input, those for incor-
rect input values must be tested as well.

Example for equivalence 
class partitioning

The example for the calculation of the dealer discount from section 2.2.2 is revis-
ited here to clarify the facts. Remember, the program will prescribe the dealer dis-
count. The following text is part of the description of the requirements: “For a 
sales price of less than $15,000, no discount shall be given. For a price up to 
$20,000, a 5% discount is given. Below $25,000, the discount is 7%, and from 
$25,000 onward, the discount is 8.5%.”

Four different equivalence classes with correct input values (called valid
equivalence classes, or vEC, in the table) can easily be derived for calculating the 
discount (see table 5-1).

Table 5–1
Valid equivalence classes 

 and representatives

 

Parameter Equivalence classes Representative

Sales price vEC1: 0  x < 15000
vEC2: 15000  x  20000
vEC3: 20000 < x < 25000
vEC4: x  25000

14500
16500
24750
31800

In section 2.2.2, the input values 14,500, 16,500, 24,750, 31,800 (see table 2-2) 
were chosen.
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Every value is a representative for one of the four equivalence classes. It is 
assumed that test execution with input values like, for example, 13400, 17000, 
22300, and 28900 does not lead to further insights and therefore does not find 
further failures. With this assumption, it is not necessary to execute those extra 
test cases. Note that tests with boundary values of the equivalence classes (for 
example, 15000) are discussed in section 5.1.2.

Equivalence classes with 

invalid values

Besides the correct input values, incorrect or invalid values must be tested. 
Equivalence classes for incorrect input values must be derived as well, and 
test cases with representatives of these classes must be executed. In the 
example we used earlier, there are the following two invalid equivalence 
classes4 (iEC).

Table 5–2
Invalid equivalence classes 

and representatives

 

Parameter Equivalence classes Representative

Sales price iEC1: x < 0
negative, i.e., wrong sales price
iEC2: x > 1000000
unrealistically high sales pricea

a. The value 1,000,000 is chosen arbitrarily. Discuss with the car manufacturer or 
dealer what is unrealistically high!

-4000

1500800

Systematic development 

of the test cases

The following describes how to systematically derive the test cases. For 
every input data element that should be tested (e.g., function/method 
parameter at component tests or input screen field at system tests), the 
domain of all possible input values is determined. This domain is the 
equivalence class containing all valid or allowed input values. Following 
the specification, the program must correctly process these values. The val-
ues outside of this domain are seen as equivalence classes with invalid 
input values. For these values as well, it must be tested how the test object 
behaves.

Further partitioning of the 

equivalence classes

The next step is refining the equivalence classes. If the test object’s 
specification tells us that some elements of equivalence classes are pro-
cessed differently, they should be assigned to a new (sub) equivalence 
class. The equivalence classes should be divided until each different 
requirement corresponds to an equivalence class. For every single equiva-
lence class, a representative value should be chosen for a test case.

4. A more correct term would be equivalence classes for invalid values instead of invalid 
equivalence class because the equivalence class itself is not invalid, only the values of 
this class, referring to the specified input.
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To complete the test cases, the tester must define the preconditions 
and the expected result for every test case.

Equivalence classes 

for output values

The same principle of dividing into equivalence classes can be used for 
the output data. However, identification of the individual test cases is more 
expensive because for every chosen output value, the corresponding input 
value combination causing this output must be determined. For the output 
values as well, the equivalence classes with incorrect values must not be 
left out.

Partitioning into equivalence classes and selecting the representatives 
should be done carefully. The probability of failure detection is highly 
dependent upon the quality of the partitioning as well as which test cases 
are executed. Usually, it is not trivial to produce the equivalence classes 
from the specification or from other documents.

Boundaries of the 

equivalence classes

The best test values are certainly those verifying the boundaries of the 
equivalence classes. There are often misunderstandings or inaccuracies in 
the requirements at these spots because our natural language is not precise 
enough to accurately define the limits of the equivalence classes. The col-
loquial phrase … less than $15000 … within the requirements may mean 
that the value 15000 is inside (EC: x <= 15000) or outside of the equiva-
lence class (EC: x < 15000). An additional test case with x = 15000 may 
detect a misinterpretation and therefore failure. Section 5.1.2 discusses the 
analysis of the boundary values for equivalence classes in detail.

Example: 
Equivalence class 

construction for integer 
input values

To clarify the procedure for building equivalence classes, all possible equivalence 
classes for an integer input value shall be identified. The following equivalence 
classes result for the integer parameter extras of the function 
calculate_price()::

Table 5–3
Equivalence classes 

 for integer input values

Parameter Equivalence classes

extras vEC1: [MIN_INT,…, MAX_INT] a

a. MIN_INT and MAX_INT each describe the minimum and maximum integer num-
ber that the computer can represent. These may vary depending on the hard-
ware.

iEC1: NaN (Not a Number)

Notice that the domain is limited on a computer by the computer’s maximum and 
minimum values, contrary to plain mathematics. Using values outside the com-
puter domain often leads to failures because such exceptions are not caught cor-
rectly.
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The equivalence class for incorrect values is derived from the following con-
sideration: Incorrect values are numbers that are greater or smaller than the range 
of the applicable interval or every nonnumeric value.5 If it is assumed that the 
program’s reaction on an incorrect value is always the same (e.g., an exception 
handling that delivers the error code NOT_VALID), then it is sufficient to map all 
possible incorrect values on one common equivalence class (named NaN for Not a 
Number here). Floating-point numbers are part of this equivalence class because 
it is expected that the program displays an error message to inputs such as 3.5. In 
this case, the equivalence class partitioning method does not require any further 
subdivision because the same reaction is expected for every wrong input. How-
ever, an experienced tester will always include a test case with a floating-point 
number in order to determine if the program rounds the number and then uses 
the corresponding integer number for its computation. The basis for this addi-
tional test case is thus experience-based testing (see section 5.3).

Because negative and positive values are usually handled differently, it is sen-
sible to further partition the valid equivalence class (cEV1). Zero is also an input, 
which often leads to failure.

Table 5–4
Equivalence classes and 

representative values for 

integer inputs

Parameter Equivalence classes Representatives

extras vEC1: [MIN_INT, …, 0[
a

a. ‘[‘ Specifies an open interval until just below the given value, but not including 
it. The definition [MIN_INT, ... , -1] is equivalent because we deal with integer 
numbers in this case.

vEC : [0, …, MAX_INT]

iEC1: NaN (Not a Number)

-123

654

“f”

The representative was chosen relatively arbitrarily from the three equivalence 
classes. Additionally, we should test the boundary values (see section 5.1.2) of the 
corresponding equivalence classes: MIN_INT, -1, 0, MAX_INT. For the equivalence 
classes of the invalid values, no boundary values can be given.

Thus, using equivalence partitioning and including the boundary values for 
the integer parameter extras results in the following seven values to be tested:

{”f”, MIN_INT, -123, -1, 0, 654, MAX_INT}.

For each of these inputs, the predicted outputs or reactions of the test object must 
be defined, in order to decide after running the test if there was a failure.

5. If, and which, incorrect values are found by the compiler depends on the chosen pro-
gramming language and the compiler and runtime system chosen. This may happen 
when calling the test driver. In our example we assume that the compiler does not rec-
ognize incorrect parameter values. Thus, their processing must be checked during 
dynamic testing.

2
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Equivalence classes of 

inputs, which are no basic 

data types

For the integer input data of the example, it is very easy to determine 
equivalence classes and the corresponding representative test values. 
Besides the basic data types, data structures and sets of objects can also 
occur. It must then be decided in each case with which representative val-
ues to execute the test case.

Example for input values 
to be selected from a set

The following example should clarify this: A potential customer can be a working 
person, a student, a trainee, or a retired person. If the test object needs to react 
differently to each kind of customer, then every possibility must be verified with 
an additional test case. If there is no requirement for different reactions for each 
person type, then one test case may be sufficient. 

If the test object is the component that calculates payment options 
(EasyFinance), then four different test cases must be provided. Financing will 
surely be calculated differently for the different customer groups. Details must be 
looked up in the requirements. Each calculation must be verified by a test to 
check the correctness of the calculations and to find failures.

For the test of the component that handles the online configuration of the car 
(VirtualShowRoom), it may be sufficient to choose only one representative for the 
customer, such as, for example, a working person. It is probably not relevant if a 
student or a retired person configures the car. The tester should, however, be 
aware that if she executes the test with the input working person only, she would 
not be able to tell anything about the correctness of the car configuration for any 
of the other person groups.

Hint for determining 
equivalence classes

The following hints can help determine equivalence classes:

■ For the inputs as well as for the outputs, identify the restrictions and conditions 
from the specification.

■ For every restriction or condition, partition into equivalence classes:
• If a continuous numerical domain is specified, then create one valid and two 

invalid equivalence classes.
• If a number of values should be entered, then create one valid (with all possi-

ble correct values) and two invalid equivalence classes (less and more than 
the correct number).

• If a set of values is specified where each value may possibly be treated differ-
ently, then create one valid equivalence class for each value of the set (con-
taining exactly this one value) and one additional invalid equivalence class 
(containing all possible other values).

• If there is a condition that must be fulfilled, then create one valid and one in-
valid equivalence class to test the condition fulfilled and not fulfilled.

■ If there is any doubt that the values of one equivalence class are treated equally, 
the equivalence class should be divided further into subclasses.
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Test Cases

Combination of the 

representatives

Usually, the test object has more than one input parameter. The equiva-
lence class technique results in at least two equivalence classes (one valid 
and one invalid) for each of these parameters of the test object. Therefore, 
there are at least two representative values that must be used as test input 
for each parameter.

In order to specify a test case, you must assign each parameter an 
input value. For this purpose, it must be decided which of the available 
values should be combined to form test cases. To guarantee that all test 
object reactions (modeled by the equivalence class division) are triggered, 
you must combine the input values (i.e., the representatives of the corre-
sponding equivalence classes), using the following rules:

Rules for test case design■ The representative values of all valid equivalence classes should be 
combined to test cases, meaning that all possible combinations of valid 
equivalence classes will be covered. Any of those combinations builds a 
valid test case or a positive test case.

Separate test of the 
invalid value

■ The representative value of an invalid equivalence class shall be com-
bined only with representatives of other valid equivalence classes. 
Thus, for every invalid equivalence class an additional negative test case
shall be specified.

Restriction of the number 
of test cases

The number of valid test cases is the product of the number of valid equiv-
alence classes per parameter. Because of this multiplicative combination, 
even a few parameters can generate hundreds of valid test cases. Since it is 
seldom possible to use that many test cases, more rules are necessary to 
reduce the number of valid test cases:

Rules for test case restriction■ Combine the test cases and sort them by frequency of occurrence (typ-
ical usage profile). Prioritize the test cases in this order. That way only 
the relevant test cases (or combinations appearing often) are tested.

■ Test cases including boundary values or boundary value combinations 
are preferred.

■ Combine every representative of one equivalence class with every 
representative of the other equivalence classes (i.e., pairwise combina-
tions6 instead of complete combinations).

6. See section 4.2.5 in [Bath 08]. The pairwise combination test method is described in 
this book in section 5.1.4. 
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■ Ensure that every representative of an equivalence class appears in at 
least one test case. This is a minimum criterion.

■ Representatives of invalid equivalence classes should not be combined 
with representatives of other invalid equivalence classes.

Test invalid values separately The representatives of invalid equivalence classes are not combined. An 
invalid value should only be combined with valid ones because an incor-
rect parameter value normally triggers an exception handling. This is usu-
ally independent of values of other parameters. If a test case combines 
more than one incorrect value, defect masking may result and only one of 
the possible exceptions is actually triggered and tested. When a failure 
appears, it is not obvious which of the incorrect values has triggered the 
effect. This leads to extra time and cost for failure analysis.7

Example: 
Test of the DreamCar price

calculation

In the following example, the function calculate_price() from the VSR-Subsys-
tem DreamCar serves as test object (specified in section 3.2.3). We must test if the 
function calculates the correct total price from its input values. We assume that 
the inner structure of the function is unknown. Only the functional specification 
of the function and the external interface are known. 

double calculate_price (
double baseprice, // base price of the vehicle
double specialprice, // special model addition
double extraprice, // price of the extras
int extras, // number of extras
double discount // dealer's discount
)

Step 1: 
Identifying the domain

The equivalence class technique is used to derive the required test cases from the 
input parameters. First, we identify the domain for every input parameter. This 
results in equivalence classes for valid and invalid values for each parameter (see 
table 5-5).

With this technique, at least one valid and one invalid equivalence class per 
parameter has been derived exclusively from the interface specifications (test data 
generators work in a similar way; see section 7.1.2).

 

7. It is sometimes useful to combine representatives of invalid equivalence classes to pro-
duce additional test cases, thus provoking further failures.
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Parameter Equivalence classes

baseprice vEC11: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC11: NaN

specialprice vEC21: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC21: NaN

extraprice vEC31: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC31: NaN

extras vEC41: [MIN_INT, … , MAX_INT]
iEC41: NaN

discount vEC51: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC51: NaN

Step 2: Refine the 

equivalence classes based 
on the specification

Table 5–5
Equivalence classes
 for integer input values

In order to further subdivide these equivalence classes, information about the 
functionality of this method is needed. The functional specification delivers this 
information (see section 3.2.3). From this specification the following statements 
relevant for testing can be found:
■ Parameters 1 to 3 are prices (of cars). Prices are not negative. The specification 

does not define any price limits.
■ The value extras controls the discount for the supplementary equipment (10% 

if extras  3 and 15% if extras  5). The parameter extras defines the number 
of chosen parts of supplementary equipment and therefore it cannot be nega-
tive.8 The specification does not define an upper limit for the number.

■ The parameter discount denotes a general discount and is given as a percentage 
between 0 and 100. Because the specification text defines the limits for the dis-
count for supplementary equipment as a percentage, the tester can assume that 
this parameter is entered as a percentage as well. Consultation with the client 
will otherwise clarify this matter.

These considerations are based not only on the functional specification. Rather, 
the analysis uncovers some “holes” in the specification. The tester fills these holes 
by making plausible assumptions based on application domain or general know-
ledge and her testing experience or by asking colleagues (testers or developers). If 
there is any doubt, consultation with the client is useful. The equivalence classes 
already defined before can be refined (partitioned into subclasses) during this 
analysis. The more detailed the equivalence classes are, the more precise the test. 
The class partition is complete when all conditions in the specification as well as 
conditions from the tester’s knowledge are incorporated.

 

8. Floating-point numbers are part of the equivalence class NaN. See table 5-5 for designing 
equivalence classes for integer number values.
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Parameter Equivalence classes Representatives

baseprice vEC11: [0, … , MAX_DOUBLE] 20000.00

iEC11: [MIN_DOUBLE, … , 0[
a

a. 0[ means approaching, but not including zero.

iEC12: NaN
-1.00
”abc”

specialprice vEC21: [0, … , MAX_DOUBLE] 3450.00

iEC21: [MIN_DOUBLE, … , 0[
iEC22: NaN

-1.00
”abc”

extraprice vEC31: [0, … , MAX_DOUBLE] 6000.00

iEC31: [MIN_DOUBLE, … , 0[
iEC32: NaN

-1.00
”abc”

extras vEC41: [0, … , 2]
vEC42: [3, 4]
vEC43: [5, … , MAX_INT]

1
3
20

iEC41: [MIN_INT, … , 0[
iEC42: NaN

-1.00
”abc”

discount vEC51: [0, … , 100] 10.00

iEC51: [MIN_DOUBLE, … , 0[
iEC52: ]100, … , MAX_DOUBLE]
iEC53: NaN

-1.00
101.00
”abc”

Table 5–6
Further partitioning of the 
equivalence classes of the 
parameter of the function 
Calculate_price() with 

representatives

The result: Altogether, 18 equivalence classes are produced, 7 for correct/valid 
parameter values and 11 for incorrect/invalid ones.

Step 3: 
Select representatives

To get input data, one representative value must be chosen for every equiva-
lence class. According to equivalence class theory, any value of an equivalence 
class can be used. In practice, perfect decomposition is seldom done. Due to an 
absence of detailed information, lack of time, or just lack of motivation, the 
decomposition is aborted at a certain level. Several equivalence classes might 
even (incorrectly) overlap.9 Therefore, one must remember that there could be 
values inside an equivalence class where the test object could react differently. 
Usage frequencies of different values may also be important.

Hence, in the example, the values for the valid equivalence classes are selected 
to represent plausible values and values that will probably often appear in prac-
tice. For invalid equivalence classes, possible values with low complexity are cho-
sen. The selected values are shown in table 5-6.

Step 4: 
Combine the test cases

The next step is to combine the values to test cases. Using the previously given 
rules, we get 1 × 1 × 1 × 3 × 1 = 3 valid test cases (by combining the representa-
tives of the valid equivalence classes) and 2 + 2 + 2 + 2 + 3 = 11 negative test cases 
(by separately testing representatives of every invalid class). In total, 14 test cases 
result from the 18 equivalence classes (table 5-7). 

9. The ideal case is that the identified classes (like equivalence classes in mathematics) are 
not overlapping (disjoint). This should be strived for, but it’s not guaranteed by the 
partitioning technique.
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Parameter

Test 
case

baseprice special
price

extraprice extras discount  result

1 20000.00 3450.00 6000.00 1 10.00 27450.00

2 20000.00 3450.00 6000.00 3 10.00 26850.00

3 20000.00 3450.00 6000.00 20 10.00 26550.00

4 -1.00 3450.00 6000.00 1 10.00 NOT_VALID

5 ”abc” 3450.00 6000.00 1 10.00 NOT_VALID

6 20000.00 -1.00 6000.00 1 10.00 NOT_VALID

7 20000.00 ”abc” 6000.00 1 10.00 NOT_VALID

8 20000.00 3450.00 -1.00 1 10.00 NOT_VALID

9 20000.00 3450.00 ”abc” 1 10.00 NOT_VALID

10 20000.00 3450.00 6000.00 -1.00 10.00 NOT_VALID

11 20000.00 3450.00 6000.00 ”abc” 10.00 NOT_VALID

12 20000.00 3450.00 6000.00 1 -1.00 NOT_VALID

13 20000.00 3450.00 6000.00 1 101.00 NOT_VALID

14 20000.00 3450.00 6000.00 1 ”abc” NOT_VALID

Table 5–7
Further partitioning of the 

equivalence classes of the 

parameter test cases
of the function 

Calculate_price()

For the valid equivalence classes, the same representative values were used to 
ensure that only the variance of one parameter triggers the reaction of the test 
object.

Because four out of five parameters have only one valid equivalence class, 
only a few valid test cases result. There is no reason to reduce the number of test 
cases any further.

After the test inputs have been chosen, the expected outcome must be identi-
fied for every test case. For the negative tests this is easy: The expected result is 
the corresponding error code or message. For the valid test cases, the expected 
outcome must be calculated (for example, by using a spreadsheet).

Definition of Test Exit Criteria

A test exit criterion for the test by equivalence class partitioning can be 
defined as the percentage of executed equivalence classes with respect to 
the total number of specified equivalence classes:

EC-coverage = (number of tested EC/total number of EC) × 100%

In the example, 18 equivalence classes have been defined, but only 15 have 
been executed in the chosen test cases. Then the equivalence class coverage 
is 83%.

EC-coverage = (15/18) × 100% = 83.33%
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Example: 
Equivalence class 

coverage

All 18 equivalence classes are contained with at least one representative each in 
these 14 test cases (table 5-7). Thus, executing all 14 test cases achieves 100% 
equivalence class coverage. If the last three test cases are left out, for example due 
to time limitations (i.e., only 11 instead of 14 test cases are executed), all three 
invalid equivalence classes for the parameter discount are not tested and the 
coverage will be 15/18 (for example, 83.33%).

Degree of coverage defines 

test comprehensiveness

The more thoroughly a test object should be tested, the higher you should 
plan the intended coverage. Before test execution, the predefined coverage 
serves as a criterion for deciding when the testing is sufficient, and after 
test execution, it serves as verification if the required test intensity has been 
achieved.

If, in the previous example, the intended coverage for equivalence 
classes is defined as 80%, then this can be achieved with only 14 of the 
18 tests. The test using equivalence class partitioning can be finished after 
14 test cases. Thus, test coverage is a measurable criterion for ending testing.

The previous example also shows how critical it is to identify the 
equivalence classes. If the equivalence classes have not been identified 
completely, then fewer representative values will be chosen for designing 
test cases, and fewer test cases will result. A high coverage is achieved, but 
it has been calculated based on an incorrect total number of equivalence 
classes. The supposed good result does not reflect the actual intensity of 
the testing. Test case identification using equivalence class partitioning is 
only as good as the analysis it is based on.

The Value of the Technique

Equivalence class partitioning is a systematic technique. It contributes to a 
test where specified conditions and restrictions are not overlooked. The 
technique also reduces the amount of unnecessary test cases. Unnecessary 
test cases are the ones that have data from the same equivalence classes and 
therefore result in equal behavior of the test object.

Equivalence classes cannot be determined only for inputs and out-
puts of methods and functions. They can also be prepared for internal 
values and states, time-dependent values (for example, before or after an 
event), and interface parameters. The method can thus be used in any 
test level.

However, only single input or output conditions are considered. Possi-
ble dependencies or interactions between conditions are ignored. If they 
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are considered, this is very expensive, but it can be done through further 
partitioning of the equivalence classes and by specifying appropriate com-
binations. This kind of combination testing is also called domain analysis. 

However, in combination with fault-oriented techniques, like bound-
ary value analysis, equivalence class partitioning is a powerful technique.

5.1.2 Boundary Value Analysis

A reasonable extension ➞Boundary value analysis delivers a very reasonable addition to the test 
cases that have been identified by equivalence class partitioning. Faults 
often appear at the boundaries of equivalence classes. This happens 
because boundaries are often not defined clearly or are misunderstood. A 
test with boundary values usually discovers failures. The technique can be 
applied only if the set of data in one equivalence class is ordered and has 
identifiable boundaries.

Boundary value analysis checks the borders of the equivalence classes. 
On every border, the exact boundary value and both nearest adjacent val-
ues (inside and outside the equivalence class) are tested. The minimal pos-
sible increment in both directions should be used. For floating-point data, 
this can be the defined tolerance. Therefore, three test cases result from 
every boundary. If the upper boundary of one equivalence class equals the 
lower boundary of the adjacent equivalence class, then the respective test 
cases coincide as well.

In many cases there does not exist a “real” boundary value because the 
boundary value belongs to an equivalence class. In such cases, it can be 
sufficient to test the boundary with two values: one value that is just inside 
the equivalence class and another value that is just outside the equivalence 
class.

Example: 
Boundary values for 
discount

For computing the discount on the sales price (table 5-1), four valid equivalence 
classes were determined and corresponding values chosen for testing the classes. 
Equivalence classes 3 and 4 are specified with vEC3: 20000 < x  25000 and 
vEC4: x  25000. For testing the common boundary of the two equivalence 
classes (25000), the values 24999 and 25000 are chosen (to simplify the situation, 
it is assumed that only whole dollars are possible). The value 24999 lies in vEC3 
and is the largest possible value in that equivalence class. The value 25000 is the 
least possible value in vEC4. The values 24998 and 25001 do not give any more 
information because they are further inside their corresponding equivalence 
classes. Thus, when are the values 24999 and 25000 sufficient and when should 
we additionally use the value 25001?
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Two or three tests It can help to look at the implementation. The program will probably contain 
the ➞instruction if (x < 25000)….10 Which test cases could find a wrong imple-
mentation of this condition? The test values 24999, 25000, and 25001 generate 
the truth-values true, false, and false for the IF statement and the corresponding 
program parts are executed. Test value 25001 does not seem to add any value 
because test value 25000 already generates the truth-value false (and thus the 
change to the neighbor equivalence class). Wrong implementation of the state-
ment if (x  25000) leads to the truth-values true, true, and false. Even here, a test 
with the value 25001 does not lead to any new results and can thus be omitted, 
because the test with value 25000 will lead to a failure and thus find the fault. 
Only a totally wrong implementation stating, for example, if (x <> 25000) and the 
truth-values true, false, and true can be found with test case value 25001. The 
values 24999 and 25000 deliver the expected results, that is, the same ones as with 
the correct implementation.

Hint Wrong implementation of the instruction in if (x > 25000) with false, false, 
and true and in if (x  25000) with false, true, and true results in two or three dif-
ferences between actual and expected result and can be found by test cases with 
the values 24999 and 25000.

To illustrate the facts, table 5-8 shows the different conditions and the truth-
values of the corresponding boundary values.

Table 5–8
Table with three boundary 

values to test the condition

Implemented 
condition

24999 25000 25001 Remark

X < 25000 (correct) True False False Expected result

X  25000 True True False 25000 finds the fault

X <> 25000 True False True 25001 find the fault

X > 25000 False False True 24999 and 25001 find the fault

X  25000 False True True  All three values find the fault

X == 25000 False True False 24999 and 25000 find the fault

It should be decided when a test with only two values is considered enough 
or when it is beneficial to test the boundary with three values. The wrong 
query in the example program, implemented as if (x <> 25000), can be 

10. If the programmer has written if (x  24999), there will be no semantic difference from 
if (x < 25000). However, the boundary values determined from analyzing the 
specification (24999, 25000, and 25001) do not test the implemented statement if 
(x  24999) completely. Incorrectly implementing if (x == 24999) would give the same 
result (true, false, false) for the three values. A code review could in this case find the 
discrepancy between specification and code.
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found in a code review because it does not check the boundary of a value 
area if (x < 25000) but instead checks whether two values are unequal. 
However, this fault can easily be overlooked. Only with a boundary value 
test with three values can all possible wrong implementations of boundary 
conditions be found.

Example: 
Integer input

A test involving an integer input value (see section 5.1.1) produces 5 new test 
cases, giving us a total of 12 test cases with the following input values:

{”f”,
MIN_INT-1, MIN_INT, MIN_INT+1,
-123,
-1, 0, 1,
654,
MAX_INT-1, MAX_INT, MAX_INT+1}

The test case with the input value -1 tests the maximum value of the equivalence 
class EC1: [MIN_INT, … 0[. This test case also verifies the smallest deviation from 
the lower boundary (0) of the equivalence class EC2: [0, …, MAX_INT]. Seen from 
EC2, the value lies outside this equivalence class. Note that values above the 
uppermost boundary as well as beneath the lowermost boundary cannot always 
be entered due to technical reasons.

Only test values for the input variable are given in this example. To complete 
the test cases for each of the 12 values, the expected behavior of the test object 
and the expected outcome must be specified using the test oracle. Additionally, 
the applicable pre- and postconditions are necessary.

Is the test cost justified? Here too we have to decide if the test cost is justified, and every boundary 
with the adjacent values must be tested with extra test cases. Test cases with val-
ues of equivalence classes that do not verify any boundary can be dropped. In the 
example, these are the test cases with the input values -123 and 654. It is assumed 
that test cases with values in the middle of an equivalence class do not deliver any 
new insight. This is because the maximum and the minimum values of the equiv-
alence class are already chosen in some test cases. In the example these values are 
MIN_INT +1, 1, and MAX_INT-1.

Boundaries do not exist 

for sets

For the example with the input data element customer given earlier, no 
boundaries for the input domain can be found. The input data type is dis-
crete, that is, a set of the four elements (working person, student, trainee, 
and retired person). Boundaries cannot be identified here. A possible 
order by age cannot be defined clearly.

Of course, boundary value analysis can also be applied for output 
equivalence classes.
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Test Cases

Analogous to the test case determination in equivalence class partition, the 
valid boundaries inside an equivalence class may be combined as test cases. 
The invalid boundaries must be verified separately and cannot be com-
bined with other invalid boundaries.

As described in the previous example, values from the middle of an 
equivalence class are, in principle, not necessary if the two boundary val-
ues in an equivalence class are used for test cases.

Example: Boundary values 
for calculate_price()

Table 5-9 lists the boundary values for the valid equivalence classes for verifica-
tion of the function calculate_price(). 

Parameter Lower boundary value [Equivalence class]
Upper boundary value

baseprice 0-a

a. The accuracy considered here depends on the problem (for example, a given 
tolerance) and the number representation of the computer.

,[0, 0+, ..., MAX_DOUBLE-, MAX_DOUBLE], MAX_DOUBLE+

specialprice Same values as baseprice

extraprice Same values as baseprice

-1, [0, 1, 2], 3
2, [3, 4], 5
4, [5, 6, …, MAX_INT-1, MAX_INT], MAX_INT+1

discount 0-,[0, 0+, ..., 100-, 100], 100+

 

Table 5–9
Boundaries of the parameters 

of the function 

calculate_price()

Considering only those boundaries that can be found inside equivalence classes, 
we get 4 + 4 + 4 + 9 + 4 = 25 boundary-based values. Of these, two (extras: 1, 3) 
are already tested in the original equivalence class partitioning in the example 
before (test cases 1 and 2 in table 5-7). Thus, the following 23 boundary values 
must be used for new test cases:

baseprice: 0.00, 0.0111, MAX_DOUBLE-0.01, MAX_DOUBLE
specialprice: 0.00, 0.01, MAX_DOUBLE-0.01, MAX_DOUBLE
extraprice: 0.00, 0.01, MAX_DOUBLE-0.01, MAX_DOUBLE
extras: 0, 2, 4, 5, 6, MAX_INT-1, MAX_INT
discount:  0.00, 0.01, 99.99, 100.00

As all values are valid boundaries, they can be combined into test cases 
(table 5-10).

11. For the test cases, 0.01 was assumed to be precise enough.
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The expected results of a boundary value test are often not clearly visible 
from the specification. The experienced tester must then define reasonable 
expected results for her test cases:
■ Test case 15 verifies all valid lower boundaries of equivalence classes of the pa-

rameters of calculate_price(). The test case doesn’t seem to be very realistic.12

This is because of the imprecise specification of the functionality, where no 
lower and upper boundaries are specified for the parameters (see below).13

■ Test case 16 is analogous to test case 15, but here we test the precision of the cal-
culation.14

■ Test case 17 combines the next boundaries from table 5-9. The expected result 
is rather speculative with a discount of 99.99%. A look into the specification of 
the method calculate_price() shows that the prices are added. Thus, it makes 
sense to check the maximal values individually. Test cases 18 to 20 do this. For 
the other parameters, we use the values from test case 1 (table 5-7). Further sen-
sible test cases result when the values of the other parameters are set to 0.00, in 
order to check if maximal values without further addition are handled correctly 
and without overflow.

■ Analogous to test cases 17 to 20, test cases for MAX_DOUBLE should be run.
■ For the still-not-tested boundary values (extras = 5, 6, MAX_INT-1, MAX_INT 

and discount = 100.00), more test cases are needed.

Boundary values outside the valid equivalence classes are not used here.

The example shows the detrimental effect of imprecise specifications on 
the test.15 If the tester communicates with the customer before deter-
mining the test cases, and the value ranges of the parameters can be 
specified more precisely, then the test will be less expensive. This is 
shown here.

12. Remark: A test with 0.00 for the base price is reasonable, but it should be done in sys-
tem testing because for this input value, calculate price() is not necessarily respon-
sible for processing it.

13. The dependence between the number of extras and extra price (if no extras are given, a 
price should not be displayed) cannot be checked through equivalence partitioning or 
boundary value analysis. This requires the use of cause-and-effect analysis (see section 
5.1.4 and [Myers 79]).

14. In order to exactly check the rounding precision, values like, for example, 0.005 are 
needed.

15. And definitely for programming, too.
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Parameter

Testcase baseprice specialprice extraprice extras discount result

15 0.00 0.00 0.00 0 0.00 0.00

16 0.01 0.01 0.01 2 0.01 0.03

17 MAX_DOUBLE-0.01 MAX_DOUBLE-0.01 MAX_DOUBLE-0.01 4 99.99 >MAX_DOUBLE

18 MAX_DOUBLE-0.01 3450.00 6000.00 1 10.00 >MAX_DOUBLE

19 20000.00 MAX_DOUBLE-0.01 6000.00 1 10.00 >MAX_DOUBLE

20 20000.00 3450.00 MAX_DOUBLE-0.01 1 10.00 >MAX_DOUBLE

...

Table 5–10
Further test cases for the function calculate_price()s

16. The maximum price for extra items cannot be specified exactly because the depen-
dence between the number of extras and the total price cannot be considered. We used 
the value 25 × 750 = 18750. An extra price of 0 was not included as a further boundary 
value because the dependency of the number of extras and the total value of the extras 
cannot be checked with equivalence class partitioning or boundary value analysis.

 

Early test planning— 

already during 

specification—pays off

The customer has given the following information:

■ The base price is between 10000 and 150000.
■ The extra price for a special model is between 800 and 3500.
■ There are a maximum of 25 possible extras, whose prices are between 

50 and 750.
■ The dealer discount is maximum 25%.

After specifying the equivalence classes, the following valid boundary 
values result for the parameters:

baseprice: 10000.00, 10000.01, 149999.99, 150000.00
specialprice: 800.00, 800.01, 3499.99, 3500.00

extraprice: 50.00, 50.01, 18749.99, 18750.0016

extras: 0, 1, 2, 3, 4, 5, 6, 24, 25
discount: 0.00, 0.01, 24.99, 25.00

All these values may be freely combined to test cases. One test case is 
needed for each value outside the equivalence classes. The following values 
must be considered:

baseprice: 9999.99, 150000.01
specialprice: 799.99, 3500.01
extraprice: 49.99, 18750.01
extras: -1, 26
discount: -0.01, 25.01
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Thus, we see that a more precise specification results in fewer test cases and 
clear prediction of the results.

Adding the boundary values for the machine (MAX_DOUBLE, MIN_DOUBLE, 
etc.) is a good idea. This will detect problems with hardware restrictions.

As discussed earlier, it must be decided if it is sufficient to test a 
boundary with two instead of three test data values. In the following hints, 
we assume that two test values are sufficient because there has been a code 
review and possible totally wrong value area checks have been found.

Hint for test case design 
by boundary analysis

■ For an input domain, the boundaries and the adjacent values outside the do-
main must be considered. Domain: [-1.0; +1.0], test data: -1.0, +1.0 and -1.001, 
+1.001.17

■ If an input file has a restricted number of data records (for example, between 1 
and 100), the test values should be 1, 100 and 0, 101.

■ If the output domains serve as the basis, then this is the way to proceed: The 
output of the test object is an integer value between 500 and 1000. Test outputs 
that should be achieved: 500, 1000, 499, 1001. Indeed, it can be difficult to iden-
tify the respective input test data to achieve exactly the required outputs. Gene-
rating the invalid outputs may even be impossible, but you may find defects by 
thinking about it.

■ If the permitted number of output values is to be tested, proceed just as with the 
number of input values: If outputs of 1 to 4 data values are allowed, the test out-
puts to produce are 1, 4 as well as 0 and 5 data values.

■ For ordered sets, the first element and the last element are of special interest for 
the test.

■ If complex data structures are given as input or output (for instance, an empty 
list or zero), tables can be considered as boundary values.

■ For numeric calculations, values that are close together, as well as values that 
are far apart, should be taken into consideration as boundary values.

■ For invalid equivalence classes, boundary value analysis is only useful when 
different exception handling for the test object is expected, depending on an 
equivalence class boundary.

■ Additionally, extremely large data structures, lists, tables, etc. should be chosen. 
For example, you should exceed buffer, file, or data storage boundaries, in order 
to check the behavior of the test object in extreme cases.

■ For lists and tables, empty and full lists and the first and last elements are of in-
terest because they often show failures due to incorrect programming (Off-by-
one problem).

17. The precision to be chosen depends on the specified problem.
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Definition of the Test Exit Criteria

Analogous to the test completion criterion for equivalence class partition, 
an intended coverage of the boundary values (BVs) can also be predefined 
and calculated after execution of the tests.

BV-Coverage = (number of tested BV / total number of BV) × 100%

Notice that the boundary values, as well as the corresponding adjacent val-
ues above and below the boundary, must be counted. However, only dif-
fering values are used for the calculation. Overlapping values of adjacent 
equivalence classes are counted as only one boundary value because only 
one test case with the respective input value is used.

The Value of the Technique

In combination with 

equivalence class 

partitioning

Boundary value analysis should be used together with equivalence class 
partitioning because faults can be found more often at the boundaries of 
the equivalence classes than far inside the classes. It makes sense to com-
bine both techniques, but the technique still allows enough freedom in 
selecting the concrete test data.

The technique requires a lot of creativity to define appropriate test 
data at the boundaries. This aspect is often ignored because the technique 
appears to be very easy, even though determining the relevant boundaries 
is not at all trivial.

5.1.3 State Transition Testing

Consider history In many systems, not only the current input but also the history of execu-
tion or events or inputs influences computation of the outputs and how the 
system will behave. History of system execution needs to be taken into 
account. To illustrate the dependence on history, ➞state diagrams are 
used. They are the basis for designing the test (➞state transition testing).

The system or test object starts from an initial state and can then 
comes into different states. Events trigger state changes or transitions. An 
event may be a function invocation. State transitions can involve actions. 
Besides the initial state, the other special state is the end state. ➞Finite 
state machines, state diagrams, and state transition tables model this 
behavior.

Definition of a finite state 

machine

A finite state machine is formally defined as follows: An abstract 
machine for which the number of states and input symbols are both finite 
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and fixed. A finite state machine consists of states (nodes), transitions 
(links), inputs (link weights), and outputs (link weights). There are a finite 
number of internal configurations, called states. The state of a system 
implicitly contains the information that has resulted from the earlier 
inputs and that is necessary to find the reaction of the system to new 
inputs.

Example: 
Stack

Figure 5-3 shows the popular example of a stack. The stack—for example, a dish 
stack in a heating device—can be in three different states: empty, filled, and full.

The stack is “empty” after initializing where the maximum height (Max) is 
defined (current height = 0). By adding an element to the stack (calling the func-
tion push), the state changes to “filled” and the current height is incremented. In 
this state further elements can be added (push, increment height) as well as with-
drawn (call of the function pop, decrement height). The uppermost element can 
also be displayed (call of the function top, height unchanged). Displaying does 
not alter the stack itself and therefore does not remove any element. If the current 
height is one less than the maximum (height = Max – 1) and one element is 
added to the stack (push), then the state of the stack changes from “filled” to 
“full.” No further element can be added. The condition (Max –1) is described as 
the guard for the transition between the initial and the resulting state. Appropri-
ate guards are illustrated in figure 5-3. If one element is removed (pop) from a 
stack in the “full” state, the state is changed back from “full” to “filled.” A transi-
tion from “filled” to “empty” happens only if the stack consists of just one ele-
ment, which is removed (pop). The stack can only be deleted in the “empty” state.

Figure 5–3
State diagram of a stack

empty filled full

Name

Start and end state

State transition

state

initialize

delete

push

pop [height = 1] pop

push
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Depending upon the specification, you can define which functions (push, pop, 
top, etc.) can be called for which state of the stack. You must still clarify what hap-
pens when an element is added to a “full” stack (push*). The function must work 
differently from the case of a just–“filled” stack. Thus, the functions must behave 
differently depending on the state of the stack. The state of the test object is a 
decisive element and must be taken into account when testing.18

A possible concrete test case Here is a possible test case with pre- and postconditions for a stack that may 
store text strings:

Precondition: Stack is initialized, state is “empty”
Input: Push (“hello”)
Expected reaction: The stack contains “hello”
Postcondition: State of the stack is “filled”

Further functions of the stack (showing the current level, showing the maximum 
level, enquiry if the stack is empty, etc.) are not considered in this example 
because they do not change the state of the stack.

The test object in state 

transition testing

In state transition testing, the test object can be a complete system with dif-
ferent system states as well as a class in an object-oriented system with dif-
ferent states. Whenever the input history leads to differing behavior, a state 
transition test must be applied.

Further test cases for the 
stack example

Different levels of test intensity can be defined for a state transition test. A mini-
mum requirement is to get to all possible states. In the stack example, these states 
are empty, filled, and full.19 With an assumed maximum height of 4, all three 
states are reached after calling the following functions:

Test case 1:20 initialize [empty], push [filled], push, push, push [full].
Yet, even not all the functions of the stack have been called in this test.

Another requirement for the test is to invoke all functions. With the same 
stack as before, the following sequence of function calls is sufficient for compli-
ance with this requirement:

Test case 2: initialize [empty], push [filled], top, pop [empty], delete.
However, in this sequence, not all the states have been reached.

18. Calling top and pop in the state “empty” have not been specified in the diagram (fig 5-3). 
This was done on purpose. They will first be taken into account in the extended state 
transition tree (see figure 5-5).

19. To keep the test effort small, the maximum height of the stack should be not too high 
because the push function must be called a corresponding number of times to get to 
the “full” state.

20. The following test cases are simplified to make them easy to understand.



5.1 Black Box Testing Techniques 131
Test criteriaA state transition test should execute all specified functions of a state at 
least once. Compliance between the specified and the actual behavior of 
the test object can thus be checked.

Design a transition treeTo identify the necessary test cases, the finite state machine is trans-
formed into a so-called transition tree, which includes certain sequences 
of transitions ([Chow 78]). The cyclic state transition diagram with poten-
tially infinite sequences of states changes to a transition tree, which corre-
sponds to a representative number of states without cycles. With this 
translation, all states must be reached and all transitions of the transition 
diagram must appear.

The transition tree is built from a transition diagram this way:

1. The initial or start state is the root of the tree.
2. For every possible transition from the initial state to a following state 

in the state transition diagram, the transition tree receives a branch 
from its root to a node, representing this next state.

3. The process for step 2 is repeated for every leaf in the tree (every newly 
added node) until one of the following two end conditions is fulfilled:
• The corresponding state is already included in the tree on the way 

from the root to the node. This end condition corresponds to one 
execution of a cycle in the transition diagram.

• The corresponding state is a final state and therefore has no further 
transitions to be considered.

For the stack, the resulting transition tree is shown in figure 5-4.
Eight different paths can be recognized from the root to each of the 

end nodes (leaves). Each path represents a test case, that is, a sequence of 
function calls. Thereby, every state is reached at least once, and every pos-
sible function is called in each state according to the specification of the 
state transition diagram.

However, the transition tree doesn’t show the appropriate guards, but 
they need to be taken care of when test cases are designed.

In test case 1 (shown previously), the maximum assumed stack height 
is four and the guard condition for the transition from the filled to the full 
state when push is called is max. height (4) – 1 = 3. Three push calls are 
therefore necessary to pass from filled to full in the transition tree. In 
addition, another first push call serves to change the state from empty to 
filled. If no guard conditions are set in a transition tree (as in figures 5-4 
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and 5-5), it looks like a single push call is sufficient to move from the 
filled to the full state. 

The transition tree shown in figure 5-4 includes all possible call sequences
resulting from the state model shown in figure 5-3. In addition, the reac-
tion of the state machine for wrong usage must be checked, which means 
that functions are called in states in which they are not supposed to be 
called. Here again the remark that push needs to work differently depends 
on the state. If push is called in the “full” state, it cannot add an element to 
the stack but must leave it unchanged. A message may result, but this is 
not the same as a fault.

Incorrect use of functions It is a violation of the specification if functions are called in states 
where they should not be used (e.g., to delete the stack while in the “full” 
state). A robustness test must be executed to check how the test object 
works when used incorrectly. It should be tested to see whether unex-
pected transitions appear. The test can be seen as an analogy to the test of 
unexpected input values.

The transition tree should be extended by adding a branch for every 
function from every node. This means that from every state, all the func-
tions should be executed or at least an attempt should be made to execute 
them (see figure 5-5).

Producing an extended transition tree can help to find gaps in the 
specifications.

initialize

push

pop

initial

empty

empty

deleted

filled filled filled

full full filled

filled

full

delete

push push pop
top

top push* pop

Figure 5–4
Transition tree 

for the stack example 
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Here, for example, the pop and top calls that weren’t present in the 
state diagram in figure 5-3 (i.e., that weren’t specified) have been added to 
the state “empty.” It definitely makes sense to define which reactions to 
expect when trying pop and top calls for an empty stack. A reasonable 
reaction would be, for example, an error message. 

State transition testing is also a good technique for system testing when 
testing the graphical user interface (GUI) of the test object: The GUI usu-
ally consists of a set of screens and dialog boxes; between those, the user 
can switch back and forth (via menu choices, an OK button, etc.). If 
screens and user controls are seen as states and input reactions as state 
transitions, then the GUI can be modeled with a state diagram. Appropri-
ate test cases and test coverage can be identified by the state transition test-
ing technique described earlier.

initialize

push
pop

initial

empty

empty

deleted

filled filled filled

full full filled

full

delete

push push pop top

top push* pop

FAILURE

FAILURE

pop

top

FAILURE
deletefilled

FAILURE

delete

Figure 5–5
Transition tree for the test 
for robustness
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Example: 
Test of DreamCar-GUI

When testing the DreamCar GUI, it may look like this: 

The test starts at the DreamCar main screen (state 1). The action21 “Setup vehi-
cles” triggers the transition into the dialog “Edit vehicle” (state 2). The action 
“Cancel” ends this dialog and the application returns to state 1. Inside a state we 
can then use “local” tests, which do not change the state. These tests then verify 
the built-in functionality of the accessed screen. Navigation through arbitrarily 
complex chains of dialogs can then be modeled after this action. The state dia-
gram of the GUI ensures that all dialogs are included and verified in the test.

21. The two-staged menu choice is seen here as one action.

Figure 5–6
GUI navigation as state 

graph
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Test Cases

To completely define a state-based test case, the following information is 
necessary:

■ The initial state of the test object (component or system)
■ The inputs to the test object
■ The expected outcome or expected behavior
■ The expected final state

Further, for each expected state transition of the test case, the following 
aspects must be defined:

■ The state before the transition
■ The initiating event that triggers the transition
■ The expected reaction triggered by the transition
■ The next expected state

It is not always easy to identify the states of a test object. Often, the state is 
not defined by a single variable but is rather the result from a constellation 
of values of several variables. These variables may be deeply hidden in the 
test object. Thus, the verification and evaluation of each test case can be 
very expensive.

Hint■ Evaluate the state transition diagram from a testing point of view when writing 
the specification. If there are a high number of states and transitions, indicate 
the higher test effort and push for simplification if possible.

■ Check the specification, as well, to make sure the different states are easy to 
identify and that they are not the result of a multiple combination of values of 
different variables.

■ Check that the state variables are easy to display from the outside. It is a good 
idea to include functions that set, reset, and read the state for use during 
testing.

Definition of the Test Exit Criteria

Criteria for test intensity and for exiting can also be defined for state tran-
sition testing:

■ Every state has been reached at least once.
■ Every transition has been executed at least once.
■ Every transition violating the specification has been checked.
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Percentages can be defined using the proportion of test requirements that 
were actually executed to possible ones, similar to the earlier described 
coverage measures.

Higher-level criteria For highly critical applications, more stringent state transition test 
completion criteria can be defined:
■ All combination of transitions
■ All transitions in any order with all possible states, including multiple 

executions in a row

But, achieving sufficient coverage is often not possible due to the large 
number of necessary test cases. Therefore, it is reasonable to set a limit to 
the number of combinations or sequences that must be verified.

The Value of the Technique

State transition testing should be applied where states are important and 
where the functionality is influenced by the current state of the test object. 
The other testing techniques that have been introduced do not support 
these aspects because they do not account for the different behavior of the 
functions in different states.

Especially useful for test of 

object-oriented systems

In object-oriented systems, objects can have different states. The cor-
responding methods to manipulate the objects must then react according 
to what state they are in. State transition testing is therefore more impor-
tant for object-oriented testing because it takes into account this special 
aspect of object orientation.

5.1.4 Logic-Based Techniques (Cause-Effect Graphing and 
Decision Table Technique, Pairwise Testing)

The previously introduced techniques look at the different input data inde-
pendently. The input values are each considered separately for generating 
test cases. Dependencies among the different inputs and their effects on 
the outputs are not explicitly considered for test case design.

Cause-effect graphing [Myers 79] describes a technique that uses the dependencies for iden-
tification of the test cases. It is known as ➞cause-effect graphing. The 
logical relationships between the causes and their effects in a component 
or a system are displayed in a so-called cause-effect graph. The precondi-
tion is that it is possible to find the causes and effects from the specifica-
tion. Every cause is described as a condition that consists of input values 
(or combinations thereof). The conditions are connected with logical 
operators (e.g., AND, OR, NOT). The condition, and thus its cause, can be 
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true or false. Effects are treated similarly and described in the graph (see 
figure 5-7).

Example: 
Cause-effect graph 
for an ATM

In the following example, we’ll use the act of withdrawing money at an automated 
teller machine (ATM) to illustrate how to prepare a cause-effect graph. In order 
to get money from the machine, the following conditions must be fulfilled:22

■ The bank card is valid.
■ The PIN is entered correctly.
■ The maximum number of PIN inputs is three.
■ There is money in the machine and in the account.

The following actions are possible at the machine:
■ Reject card.
■ Ask for another PIN input.
■ “Eat” the card.
■ Ask for an other amount.
■ Pay the requested amount of money.

Figure 5-7 shows the cause-effect graph of the example. 

22. Note: This is not a complete description of a real automated teller machine but just an 
example to illustrate the technique.
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Cause-effect graph 
of the ATM
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The graph makes clear which conditions must be combined in order to achieve 
the corresponding effects.

The graph must be transformed into a ➞decision table from which the test 
cases can be derived. The steps to transform a graph into a table are as fol-
lows:

1. Choose an effect.
2. Looking in the graph, find combinations of causes that have this effect 

and combinations that do not have this effect.
3. Add one column into the table for every one of these cause-effect com-

binations. Include the caused states of the remaining effects.
4. Check to see if decision table entries occur several times, and if they 

do, delete them.

Test with decision tables The objective for a test based on decision tables is that it executes “inter-
esting” combinations of inputs—interesting in the sense that potential fail-
ures can be detected. Besides the causes and effects, intermediate results 
with their truth-values may be included in the decision table.

A decision table has two parts. In the upper half, the inputs (causes) 
are listed; the lower half contains the effects. Every column defines the test 
situations, i.e., the combination of conditions and the expected effects or 
outputs.

In the easiest case, every combination of causes leads to one test case. 
However, conditions may influence or exclude each other in such a way 
that not all combinations make sense. The fulfillment of every cause and 
effect is noted in the table with a “yes” or “no.” Each cause and effect 
should at least once have the values “yes” and “no” in the table.

Example: 
Decision table for an ATM

Because there are four conditions (from “bank card is valid” to “money availa-
ble”), there are, theoretically, 16 (24) possible combinations. However, not all de-
pendencies are taken into account here. For example, if the bank card is invalid, 
the other conditions are not interesting because the machine should reject the 
card.

An optimized decision table does not contain all possible combinations, but 
the impossible or unnecessary combinations are not entered. The dependencies 
between the inputs and the results (actions, outputs) lead to the following opti-
mized decision table, showing the result (table 5-11).
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Every column of this table is to be interpreted as a test case. From the table, the 
necessary input conditions and expected actions can be found directly. Test case 5 
shows the following condition: The money is delivered only if the card is valid, 
the PIN is correct after a maximum of three tries, and there is money available 
both in the machine and in the account.

This relatively small example shows how more conditions or dependencies 
can soon result in large and unwieldy graphs or tables.

From a decision table, a decision tree may be derived. The decision 
tree is analogous to the transition tree in state transition testing in how it’s 
used.

Every path from the root of the tree to a leaf corresponds to a test case. 
Every node on the way to a leaf contains a condition that determines the 
further path, depending on its truth-value.

Test Cases

Every column is a test caseIn a decision table, the conditions and dependencies for the inputs, the cor-
responding predicted outputs, and the results for this combination of 
inputs can be read directly from every column to form a test case. The table 
defines logical test cases. They must be fed with concrete data values in 
order to be executed, and necessary preconditions and postconditions 
must be defined.

Definition of the Test Exit Criteria

Simple criteria for test exitAs with the previous methods, criteria for test completion can be defined 
relatively easily. A minimum requirement is to execute every column in the 

Decision table TC1 TC2 TC3 TC4 TC5

Conditions Bank card valid? N Y Y Y Y

PIN correct? - N N Y Y

Third PIN attempt? - N Y - -

Money available? - - - N Y

Actions Reject card Y N N N N

Ask for new PIN N Y N N N

“Eat” card N N Y N N

Ask for new amount N N N Y N

Pay cash N N N N Y

Table 5–11
Optimized decision table 

for the ATM



140 5 Dynamic Analysis – Test Design Techniques
decision table by at least one test case. This verifies all sensible combina-
tions of conditions and their corresponding effects.

The Value of the Technique

The systematic and very formal approach in defining a decision table with 
all possible combinations may show combinations that are not included 
when other test case design techniques are used. However, errors can result 
from optimization of the decision table, such as, for example, when the 
input and condition combinations to be considered are (erroneously) left 
out.

As mentioned, the graph and the table may grow quickly and lose 
readability when the number of conditions and dependent actions 
increases. Without adequate support by tools, the technique is then very 
difficult.

Pairwise Combination Testing

This test design technique can be used when interactions between different 
parameters are unknown. This is the opposite of cause-effect graphing, 
which is designed to cover explicitly known dependencies. Pairwise com-
bination testing has the objective of finding destructive interaction 
between presumably independent parameters (or parameters for which the 
specification does not include dependencies).

The technique starts from the equivalence class table. For every equiv-
alence class,23 a representative value is chosen. Then, every representative 
for one class is combined with every representative for every other class 
(taking into account only pairs of combinations, not higher-level combi-
nations).

After installation of the DreamCar subsystem, three parameters must be set: the 
operating system (Mac, Linux, or Windows), the language (German, Norwegian, 
English), and the screen size (small, large). If all combinations were chosen to test 
this, 3 × 3 × 2 = 18 test cases would result. However, choosing pair wise combi-
nations, we need only 9 test cases. Table 5-12 shows a possible solution.

23. Or even only for every valid equivalence class.
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The solution shows that each operating system occurs with every possible lan-
guage and every possible screen size. Every language also occurs with every pos-
sible screen size and with every possible operating system. Finally, every possible 
screen size occurs with every language and with every operating system. But not 
every possible triple combination (such as Mac, English, small) occurs in the test. 
Test case 9 is special: The combination of Windows and English is necessary, but 
any combinations with the screen size have already been covered in other test 
cases. Thus, the screen size can be freely chosen; for example, the most often 
occurring one can be used.

Pairwise combination tests will find any destructive interaction between 
supposedly independent parameters (provided the representative values 
chosen do this). Higher-level interactions will not necessarily be dis-
covered.

The technique is not easy to apply manually, but tools are available 
[URL: pairwise].

The technique can be extended to cover higher levels of inter-
action.

5.1.5 Use-Case-Based Testing

UML is widely usedWith the increasing use of object-oriented methods for software develop-
ment, the Unified Modeling Language (UML) ([URL: UML]) is used ever 
more frequently in practice. UML defines more than 10 graphical nota-
tions that can be used in all kinds of software development, not only 
object-oriented. 

Test case # OS Language Screen

1 Mac German small

2 Linux German large

3 Windows German large

4 Mac Norwegian large

5 Linux Norwegian small

6 Windows Norwegian small

7 Mac English large

8 Linux English small

9 Windows English Choose freely

Table 5–12
Pairwise combinations
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➞Use case testing There are many research projects and approaches to directly derive 
test cases from UML diagrams and to generate these tests more or less 
automatically. One current issue is model-based testing.24 

Requirements identification Requirements may be described as ➞use cases or business cases. They 
may be given as diagrams. The diagrams help define requirements on a 
relatively abstract level by describing typical user-system interactions. 
Testers may utilize use cases to derive test cases. 

Figure 5-8 shows a use case diagram for part of the dialog with an 
ATM for withdrawing money.

The individual use cases in this example are “Get money,” “PIN query,” 
and “Eat card.” Relationships between use cases may be “include” and 
“extend.” “Include” conditions are always used, and “extend” connections 
can lead to extensions of a use case under certain conditions at a certain 
point (extension point). Thus, the “extend” conditions are not always exe-
cuted; there are alternatives. 

Showing an external view Use case diagrams mainly serve to show the external view of a system from 
the viewpoint of the user or to show the relation to neighboring systems. 
Such external connections are shown as lines to actors (for example, the 
man symbol in the figure). There are further elements in a use case dia-
gram that are included in this discussion.

24. ISTQB [URL: ISTQB] is defining a model-based testing add-on to the Foundation 
Level syllabus.

ATM - bank machine

get money

eat card

“include”
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payment unit
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{3rd wrong PIN input} 

extension points
PIN query

Figure 5–8
Use case diagram for ATM
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Pre- and postconditions For every use case, certain preconditions must be fulfilled to enable its 
execution. A precondition for getting money at the ATM is, for example, 
that the bank card is valid. After a use case is executed, there are postcon-
ditions. For example, after successfully entering the correct PIN, it is pos-
sible to get money. However, first the amount must be entered, and it must 
be confirmed that the money is available. Pre- and postconditions are also 
applicable for the flow of use cases in a diagram, that is, the path through 
the diagram.

Useful for system and 

acceptance testing

Use cases and use case diagrams serve as the basis for determining test 
cases in use-case-based testing. As the external view is modeled, the tech-
nique is very useful for both system testing and acceptance testing. If the 
diagrams are used to model the interactions between different subsystems, 
test cases can also be derived for integration testing.

Typical system use is testedThe diagrams show the “normal,” “typical,” and “probable” flows and 
often their alternatives. Thus, the use-case-based test checks typical use of 
a system. It is especially important for acceptance of a system that it runs 
as stable as possible in “normal” use. Thus, use-case-based testing is highly 
relevant for the customer and user and therefore for the developer and 
tester as well.

Test Cases

Every use case has a purpose and shall achieve a certain result. Events may 
occur that lead to further alternatives or activities. After the execution, 
there are postconditions. All of the following information is necessary for 
designing test cases and is thus available:

■ Start situation and preconditions
■ Possibly other conditions
■ Expected results
■ Postconditions

However, the concrete input data and results for the individual test cases 
cannot be derived directly from the use cases. The individual input and 
output data must be chosen. Additionally, each alternative contained in the 
diagram (“extend” relation) must be covered by a test case. The techniques 
for designing test cases on the basis of use cases may be combined with 
other specification-based test design techniques.
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Definition of the Test Exit Criteria

A possible criterion is that every use case or every possible sequence of 
use cases in the diagram is tested at least once by a test case. Since alterna-
tives and extensions are use cases too, this criterion also requires their 
execution.

The Value of the Technique

Use-case-based testing is very useful for testing typical user-system inter-
actions. Thus, it is best to apply it in acceptance testing and in system test-
ing. Additionally, test specification tools are available to support this 
approach (section 7.1.4). “Expected” exceptions and special treatment of 
cases can be shown in the diagram and included in the test cases, such as, 
for example, entering a wrong PIN three times (see figure 5-8). However, 
no systematic method exists to determine further test cases for testing facts 
that are not shown in the use case diagram. The other test techniques, such 
as boundary value analysis, are helpful for this.

Excursion This section definitely did not describe all black box test design techniques. We’ll 
briefly describe a few more techniques here to offer some tips about their selection. 
Further techniques can be found in [Myers 79], [Beizer 90], [Beizer 95], and [Pol 98].

Syntax test ➞Syntax testing describes a technique for identifying test cases that can be 
applied if a formal specification of the syntax of the inputs is available. Syntax testing 
would be used for testing interpreters of command languages, compilers, and 
protocol analyzers, for example. The syntax definition is used to specify test cases 
that cover both the compliance to and violation of the syntax rules for the inputs 
[Beizer 90].

Random test ➞Random testing generates values for the test cases by random selection. If a 
statistical distribution of the input values is given (e.g., normal distribution), then it 
should be used for the selection of test values. This ensures that the test cases are
preferably close to reality, making it possible to use statistical models for predicting or 
certifying system reliability [IEEE 982], [Musa 87].

Smoke test The term smoke test is often used in software testing. A smoke test is commonly 
understood as a “quick and dirty” test that is primarily aimed at verifying the minimum 
reliability of the test object. The test is concentrated on the main functions of the test 
object. The output of the test is not evaluated in detail. It is checked only if the test 
object crashes or seriously misbehaves. A test oracle is not used, which contributes 
to making this test inexpensive and easy. The term smoke test is derived from testing 
old-fashioned electrical circuits because short circuits lead to smoke rising. A smoke 
test is often used to decide if the test object is mature enough to proceed with further 
testing designed with the more comprehensive test techniques. Smoke tests can also 
be used for first and fast tests of software updates.
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5.1.6 General Discussion of the Black Box Technique

Wrong specification 

is not detected

The basis of all black box techniques is the requirements or specifications 
of the system or its components and how they collaborate. Black box test-
ing will not be able to find problems where the implementation is based on 
incorrect requirements or a faulty design specification because there will 
be no deviation between the faulty specification or design and the 
observed results. The test object will execute as the requirements or spec-
ifications require, even when they are wrong. If the tester is critical toward 
the requirements or specifications and uses “common sense”, she may find 
wrong requirements during test design.

Otherwise, to find inconsistencies and problems in the specifications, 
reviews must be used (section 4.1.2).

Functionality that’s not 

required is not detected

In addition, black box testing cannot reveal extra functionality that 
exceeds the specifications. (Such extra functionality is often the cause of 
security problems.) Sometimes additional functions are neither specified 
nor required by the customer. Test cases that execute those additional 
functions are performed by pure chance if at all. The coverage criteria, 
which serve as conditions for test exit, are exclusively identified on the 
basis of the specifications or requirements. They are not based on unmen-
tioned or assumed functions.

Verification of the 

functionality

The center of attention for all black box techniques is the verification 
of the functionality of the test object. It is indisputable that the highest pri-
ority is that the software work correctly. Thus, black box techniques 
should always be applied.

5.2 White Box Testing Techniques
Code-based testing 

techniques

The basis for white box techniques is the source code of the test object.
Therefore, these techniques are often called structure-based testing 

techniques because they are based on the structure (of the program). They 
are also called ➞code-based testing techniques. The source code must be 
available, and in certain cases, it must be possible to manipulate it, that is, 
to add code.

All code should be executedThe foundation of white box techniques is to execute every part of the 
code of the test object at least once. Flow-oriented test cases are identified, 
analyzing the program logic, and then they are executed. However, the 
expected results should be determined using the requirements or specifi-



146 5 Dynamic Analysis – Test Design Techniques
cations, not the code. This is done in order to decide if execution resulted 
in a failure.

A white box technique can focus on, for example, the statements of the 
test object. The primary goal of the technique is then to achieve a previ-
ously defined coverage of the statements during testing, such as, for exam-
ple, to execute as many statements of the program as possible.

These are the white box test case design techniques:
■ ➞Statement testing
■ ➞Decision testing or ➞branch testing
■ Testing of conditions

• ➞Condition testing25

• ➞Multiple condition testing
• ➞Condition determination testing26

■ ➞Path testing

The following sections describe these techniques in more detail. The 
ISTQB Foundation Level syllabus describes only statement and branch or 
decision testing.

5.2.1 Statement Testing and Coverage

Control flow graph is 

necessary

This analysis focuses on each statement of the test object. The test cases 
shall execute a predefined minimum quota or even all statements of the 
test object. The first step is to translate the source code into a control flow 
graph. The graph makes it easier to specify in detail the control elements 
that must be covered. In the graph, the statements are represented as nodes 
(boxes) and the control flow between the statements is represented as 
edges (connections). If sequences of unconditional statements appear in 
the program fragment, they are illustrated as one single node because exe-
cution of the first statement of the sequence guarantees that all following 
statements will be executed. Conditional statements (IF, CASE) and loops 
(WHILE, FOR), represented as control flow graphs, have more than one 
edge going to the exit node.

After execution of the test cases, it must be determined which state-
ments have been executed (section 5.2.6). When the previously defined 

25. Also called simple condition test or coverage.
26. Also called minimal multicondition test/coverage, modified multiple condition test/

coverage, or MC/DC.
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coverage level has been achieved, the test is considered to be sufficient and 
will therefore be terminated. Normally, all instructions should be executed 
because it is impossible to verify the correctness of instructions that have 
not been executed. 

ExampleThe following example will clarify how to do this. We chose a very simple pro-
gram fragment for this example. It consists of only two decisions and one loop 
(figure 5-9).

Test cases

Coverage of the nodes of the 

control flow

In this example, all statements (all nodes) can be reached by a single test 
case. In this test case, the edges of the graph must be traversed in this order:

a, b, f, g, h, d, e

One test case is enoughAfter the edges are traversed in this way, all statements have been executed 
once. Other combinations of edges of the graph can also be used to achieve 
complete coverage. But the cost of testing should always be minimized, 
which means reaching the goal with the smallest possible number of test 
cases.

The expected results and the expected behavior of the test object 
should be identified in advance from the specification (not the code!). 
After execution, the expected and actual results, and the behavior of the 
test object, must be compared to detect any difference or failure.

IF

IF

ENDIF

ENDIF

DO

WHILE

i

h

g

f

e

d

c

b

a

k

node, statement

edge, control flow

name of edge

Legend:

n

Figure 5–9
Control flow of a program 
fragment 
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Definition of the Test Exit Criteria

The exit criteria for the tests can be very clearly defined:

➞Statement coverage =
(number of executed statements / total number of statements) × 100%

C0-measure Statement coverage is also known as C0-coverage (C-zero). It is a very 
weak criterion. However, sometimes 100% statement coverage is difficult 
to achieve, as when, for instance, exception conditions appear in the pro-
gram that can be triggered only with great trouble or not at all during test 
execution.

The Value of the Technique

Unreachable code can be 

detected

If complete coverage of all statements is required and some statements can-
not be executed by any test case, this may be an indication of unreachable 
source code (dead statements).

Empty ELSE parts are not 

considered

If a condition statement (IF) has statements only after it is fulfilled 
(i.e., after the THEN clause) and there is no ELSE clause, then the control 
flow graph has a THEN edge, starting at the condition, with (at least) one 
node, but additionally a second outgoing ELSE edge without any interme-
diate nodes. The control flow of both of these edges is reunited at the ter-
minating (ENDIF) node. For statement coverage, an empty ELSE edge 
(between IF and ENDIF) is irrelevant. Possible missing statements in this 
program part are not detected by a test using this criterion!

Statement coverage is measured using test tools (section 7.1.4).

5.2.2 Decision/Branch Testing and Coverage

A more advanced criterion for white box testing is ➞branch coverage of 
the control flow graph; for example, the edges (connections) in the graph 
are the center of attention. This time, the execution of decisions is con-
sidered instead of the execution of the statement. The result of the deci-
sion determines which statement is executed next. This should be used in 
testing.

➞branch or decision test If the basis for a test is the control flow graph with its nodes and edges, 
then it is called a branch test or branch coverage. A branch is the connec-
tion between two nodes of the graph. In the program text, there are IF or 
CASE statements, loops, and so on, also called decisions. This test is thus 
called decision test or decision coverage. There may be differences in the 



5.2 White Box Testing Techniques 149
degree of coverage. The following example illustrates this: An IF statement 
with an empty ELSE-part is checked. Decision testing gives 50% coverage 
if the condition is evaluated to true. With one more test case where the 
condition is false, 100% decision coverage will be achieved. For the branch 
test, which is built from the control flow graph, slightly different values 
result. The THEN part consists of two branches and one node, the ELSE 
part only of one branch without any node (no statement there). Thus, the 
whole IF statement with the empty ELSE part consists of three branches. 
Executing the condition with true results in covering two of the three 
branches, that is, 66% coverage. (Decision testing gives 50% in this case). 
Executing the second test case with the condition being false, 100% branch 
coverage and 100% decision coverage are achieved. Branch testing is dis-
cussed further a bit later. 

Empty ELSE-parts are 

considered

Thus, contrary to statement coverage, for branch coverage it is not 
interesting if, for instance, an IF statement has no ELSE-part. It must be 
executed anyway. Branch coverage requires the test of every decision out-
come: both THEN and ELSE in the IF statement; all possibilities for the 
CASE statement and the fall-through case; for loops, both execution of the 
loop body, bypassing the loop body and returning to the start of the loop.

Test Cases

Additional test cases 

necessary

In the example (figure 5-9), additional test cases are necessary if all 
branches of the control flow graph must be executed during the test. For 
100% statement coverage, a test case executing the following order of edges 
was sufficient:

a, b, f, g, h, d, e

The edges c, i, and k have not been executed in this test case. The edges c 
and k are empty branches of a condition, while the edge i is the return to 
the beginning of the loop. Three test cases are necessary:

a, b, c, d, e
a, b, f, g, i, g, h, d, e
a, k, e

Connection (edge) coverage 

of the control flow graph

All three test cases result in complete coverage of the edges of the control 
flow graph. With that, all possible branches of the control flow in the 
source code of the test object have been tested.
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Some edges have been executed more than once. This seems to be 
redundant, but it cannot always be avoided. In the example, the edges a 
and e are executed in every test case because there is no alternative to these 
edges.

For each test case, in addition to the preconditions and postcondi-
tions, the expected result and expected behavior must be determined and 
then compared to the actual result and behavior. Furthermore, it is reason-
able to record which branches have been executed in which test case in 
order to find wrong execution flows. This helps to find faults, especially 
missing code in empty branches.

Definition of the Test Exit Criteria

As with statement coverage, the degree of branch coverage is defined as fol-
lows:

Branch coverage =
(number of executed branches / total number of branches) × 100%

C1-measure Branch coverage is also called C1-coverage. The calculation counts only if 
a branch has been executed at all. The frequency of execution is not rele-
vant. In our example, the edges a and e are each passed three times—once 
for each test case.

If we execute only the first three test cases in our example (not the 
fourth one), edge k will not be executed. This gives a branch coverage of 
9 executed branches out of 10 total:

(9 / 10) × 100% = 90%.

For comparison, 100% statement coverage has already been achieved after 
the first test case.

Depending on the criticality of the test object, and depending on the 
expected failure risk, the test exit criterion can be defined differently. For 
instance, 85% branch coverage can be sufficient for a component of one 
project, whereas for a different project, another component must be tested 
with 100% coverage. The example shows that the test cost is higher for 
higher coverage requirements.

The Value of the Technique

More test cases necessary Decision/branch coverage usually requires the execution of more test cases 
than statement coverage. How much more depends on the structure of the 
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test object. In contrast to statement coverage, branch coverage makes it 
possible to detect missing statements in empty branches. Branch coverage 
of 100% guarantees 100% statement coverage, but not vice versa. Thus, 
branch coverage is a stronger criterion.

Each of the branches is regarded separately and no particular combi-
nations of single branches are required.

Hint■ A branch coverage of 100% should be aimed for.
■ The test can only be categorized as sufficient if, in addition to all statements, 

every possible branch of the control flow, and thus every possible result of a de-
cision in the program text, is considered during test execution.

Inadequate for object-

oriented systems

For object-oriented systems, statement coverage as well as branch coverage 
are inadequate because the control flow of the functions in the classes is 
usually short and not very complex. Thus, the required coverage criteria 
can be achieved with little effort. The complexity in object-oriented sys-
tems lies mostly in the relationship between the classes, so additional ade-
quate coverage criteria are necessary in this case. As tools often support the 
process of determining coverage, coverage data can be used to detect not-
called methods or program parts.

5.2.3 Test of Conditions27

Considering the complexity 

of combined conditions

Branch coverage exclusively considers the logical value of the result of a 
condition (“true” or “false”). Using this value, it is decided which branch 
in the control flow graph to choose and, accordingly, which statement is 
executed next in the program. If a decision is based on several (partial) 
conditions connected by logical operators, then the complexity of the con-
dition should be considered in the test. The following sections describe dif-
ferent requirements and degrees of test intensity under consideration of 
combined conditions.

27. In the ISTQB Certified Tester syllabus, condition test and multiple condition testing 
are mentioned only as examples of further structure-based techniques. These two tech-
niques, as well as condition determination testing, are described here anyway because 
they are effective techniques for testing conditions.
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Condition Testing and Coverage

The goal of condition testing is to cause each ➞atomic (partial) condition 
in the test to adopt both a true and a false value.

Definition of an atomic 

partial condition

An atomic partial condition is a condition that has no logical opera-
tors such as AND, OR, and NOT but at the most includes relation symbols 
such as > and =. A condition in the source code of the test object can con-
sist of multiple atomic partial conditions.

Example 
 for combined conditions

An example for a combined condition is x > 3 OR y < 5. The condition consists 
of two conditions (x > 3; y < 5) connected by the logical operator OR.

The goal of condition testing is that each partial condition (i.e., each individ-
ual part of a combined condition) is evaluated once, resulting in each of the log-
ical values. The test data x = 6 and y = 8 result in the logical value true for the first 
condition (x > 3) and the logical value false for the second condition (y < 5). The 
logical value of the complete condition is true (true OR false = true). The second 
pair of test data with the values x = 2 and y = 3 results in false for the first condi-
tion and true for the second condition. The value of the complete condition 
results in true again (false OR true = true). Both parts of the combined condition 
have each resulted in both logical values. The result of the complete condition, 
however, is equal for both combinations.

A weak criterion Condition coverage is therefore a weaker criterion than statement or branch 
coverage because it is not required that different logical values for the result of the
complete condition are included in the test.

Multiple Condition Testing and Coverage

All combinations of the 

logical values

Multiple condition testing requires that all true-false combinations of the 
atomic partial conditions be exercised at least once. All variations should 
be built, if possible.

Continuation 
of the example

Four combinations of test cases are possible with the test data from the previous 
example for the two conditions (x > 3, y < 5):

x = 6 (T), y = 3 (T), x > 3 OR y < 5 (T)
x = 6 (T), y = 8 (F), x > 3 OR y < 5 (T)
x = 2 (F), y = 3 (T), x > 3 OR y < 5 (T)
x = 2 (F), y = 8 (F), x > 3 OR y < 5 (F)

Multiple condition testing 
subsumes statement and 

branch coverage

The evaluation of the complete condition results in both logical values. Thus, 
multiple condition testing meets the criteria of statement and branch coverage. It 
is a more comprehensive criterion that also takes into account the complexity of 
combined conditions. But this is a very expensive technique due to the growing 
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number of atomic partial conditions that make the number of possible combina-
tions grow exponentially (to 2n, with n being the number of atomic partial con-
ditions).

Not all combinations are 

always possible

A problem results from the fact that test data cannot always generate all 
combinations.

Example for not feasible 
combinations of partial 
condition

An example should clarify this. For the combined condition of 3x AND x<5 not 
all combinations with the according values for the variable x can be produced be-
cause the parts of the combined condition depend on each other:

x = 4: 3  x (T), x < 5 (T), 3  x AND x < 5 (T)
x = 8: 3  x (T), x < 5 (F), 3  x AND x < 5 (F)
x = 1: 3  x (F), x < 5 (T), 3  x AND x < 5 (F)
x = ?: 3  x (F), x < 5 (F), combination not possible because the value x shall 

be smaller than 3 and greater than or equal to 5 at the same time.

Condition Determination Testing / Minimal Multiple Condition Testing

Restriction of the 

combinations

Condition determination testing eliminates the problems discussed previ-
ously. Not all combinations must be included; however, include every pos-
sible combination of logical values where the modification of the logical 
value of an atomic partial condition can change the logical value of the 
whole combined condition. Stated in another way, for a test case, every 
atomic partial condition must have a meaningful impact on the result. Test 
cases in which the result does not depend on a change of an atomic partial 
condition need not be designed.

Continuation 
of the example

For clarification, we revisit the example with the two atomic partial conditions 
(x > 3, y < 5) and the OR-connection (x > 3 OR y < 5). Four combinations are 
possible (22):

1) x = 6 (T), y = 3 (T), x > 3 OR y < 5 (T)
2) x = 6 (T), y = 8 (F), x > 3 OR y < 5 (T)
3) x = 2 (F), y = 3 (T), x > 3 OR y < 5 (T)
4) x = 2 (F), y = 8 (F), x > 3 OR y < 5 (F)

Changing a partial 
condition without changing 
the result

For the first combination, the following applies: If the logical value is wrongly cal-
culated for the first condition (i.e., an incorrect condition is implemented), then 
the fault can change the logical value of the first condition part from true (T) to 
false (F). But the result of the complete condition stays unchanged (T). The same 
applies for the second partial condition.
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For the first combination, incorrect results of each partial condition are 
masked because they have no effect on the result of the complete condition and 
thus failures will not become visible at the outside. Consequently, the test with the 
first combination can be left out.

If the logical value of the first partial condition in the second test case is cal-
culated wrongly as false, then the result value of the combined condition changes 
from true (T) to false (F). A failure then becomes visible because the value of the 
combined condition has also changed. The same applies for the second partial 
condition in the third test case. In the fourth test case, an incorrect implementa-
tion is detected as well because the logical value of the complete condition 
changes.

Small number of test cases For every logical combination of the combined decision, it must be 
decided which test cases are sensitive to faults and for which combinations 
faults can be masked. Combinations where faults are masked need not be 
considered in the test. Here, the number of test cases is significantly 
smaller than in multiple condition testing.

Test Cases

For designing the test cases, it must be considered which input data leads 
to which result of the decisions or partial conditions and which parts of the 
program will be executed after the decision. The expected output and 
expected behavior of the test object should also be defined in advance in 
order to detect whether the program behaves correctly.

Hint ■ Because of the weak significance, condition testing should not be used.
■ For complex conditions, condition determination testing should be applied be-

cause the complexity of the conditional expression is taken into account for test 
case design. The method also subsumes statement and branch coverage, which 
means they need not be checked in addition.

However, it may be very expensive to choose the input values in such a way 
that a certain part of the condition gets the logical value required by the 
test case.

Definition of the Test Exit Criteria

Analogous to the previous techniques, the proportion between the exe-
cuted and all the required logical values of the (partial) condition (parts) 
can be calculated. For the techniques, which concentrate on the complexity 
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of the decisions in the source code, it is reasonable to try to achieve a com-
plete verification (100% coverage). If complexity of the decisions is not 
important in testing, branch coverage can be seen as sufficient.

The Value of the Technique

Complex conditions are 

often defect prone

If complex decisions are present in the source code, they must be tested 
intensively to detect possible failures. Combinations of logical expressions 
are especially defect prone. Thus, a comprehensive test is very important. 
However, condition determination testing is an expensive technique for 
test case design.

Hint■ It can be reasonable to split combined complex conditions into a tree structure 
of nested simple conditions and then execute a branch coverage test for these 
sequences of conditions.

■ The intensive test of complex conditions can possibly be omitted if they have 
been subjected to a review (section 4.1.2) in which the correctness is verified.

ExcursionA disadvantage of condition testing is that it checks Boolean expressions only inside 
a statement (for example, IF statement). In the following example of a program frag-
ment, the following fact remains undetected: the IF condition actually consists of 
multiple parts and condition determination testing needs to be applied.

...
Flag = (A || (B && C));
If (Flag)

...;
else ...;
...

This particular disadvantage can be circumvented if all Boolean expressions that 
occur are used as a basis for the creation of test cases.

The compiler terminates 
evaluation of expressions

Another problem occurs in connection with measuring the coverage of (partial) 
conditions. Some compilers shortcut the evaluation of the Boolean expression as 
soon as the total result of the decision is known. For instance, if the value FALSE 
has been detected for one of two condition parts of an AND-combination, then the 
complete condition is FALSE regardless of the result of the second condition part. 
Some compilers even change the order of the evaluation, depending on the Boolean 
operators, to get the final result as quickly as possible and to be able to disregard 
any other partial conditions. Test cases that are supposed to achieve 100% cover-
age can be executed, but because of the shortened evaluation, this coverage cannot 
be verified.
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Excursion: 
All possible paths through a 

test object

Path Testing and Coverage28

Until now, test case determination focused on the statements or branches of the con-
trol flow as well as the complexity of decisions. If the test object includes loops or rep-
etitions, the previous considerations are not sufficient for an adequate test. Path cov-
erage requires the execution of all different paths through the test object.

Example 
for a path test

To clarify the use of the term path, consider the control flow graph in figure 5-9.
The program fragment represented by the graph contains a loop. This DO-

WHILE loop is executed at least once. In the WHILE condition at the end of the 
loop, it is decided whether the loop must be repeated, that is, if a jump back to the 
start of the loop is necessary. When using branch coverage for test design, the 
loop has been considered in two test cases:

■ Loop without repetition:
a, b, f, g, h, d, e

■ Loop with single return (i) and a single repetition:
a, b, f, g, i, g, h, d, e

Usually a loop is repeated more than once. Further possible sequences of 
branches through the graph of the program are as follows:

a, b, f, g, i, g, i, g, h, d, e
a, b, f, g, i, g, i, g, i, g, h, d, e
a, b, f, g, i, g, i, g, i, g, i, g, h, d, e
etc.

This shows that there are an indefinite number of paths in the control flow graph. 
Even with restrictions on the number of loop repetitions, the number of paths 
increases indefinitely (see also section 2.1.4).

Combination 
of program parts

A path describes the possible order of single program parts in a program 
fragment.

Contrary to this, branches are viewed independently, each for itself. 
The paths consider dependencies between the branches, as for example 
with loops, at which one branch leads back to the beginning of another 
branch.

Example: 
Statement and branch 

coverage in VSR

In section 5.1.1 for the function calculate_price() of the VSR subsystem 
DreamCar, test cases have been derived from valid and invalid equivalence 
classes of the parameters. In the following code, test cases are evaluated by their 

28. Path testing is not mentioned in the ISTQB Certified Tester Foundation Level syllabus. 
It is described here because it can be seen as a “further step” in statement and branch 
coverage and because the term is often misunderstood.
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ability to cover the source code, that is, execute respective parts of the method. 
Branch coverage of 100% should be achieved to ensure that during test execution 
all branches have been executed at least once.

For better understanding, the source code of the function from section 3.2.3 
is repeated here:

double calculate_price (
 double baseprice, double specialprice,
 double extraprice, int extras, double discount)

{
 double addon_discount;
 double result;

 if (extras >= 3) addon_discount = 10;
 else if (extras >= 5) addon_discount = 15;
 else addon_discount = 0;
 if (discount > addon_discount)

   addon_discount = discount;
 result = baseprice /100.0*(100-discount)

   + specialprice
   + extraprice/100.0*(100-addon_discount);

return (result);
}

The control flow graph of the function calculate_price() is shown in figure 5-10. 
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Figure 5–10
Control flow graph of the 
function calculate_price()
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In section 3.2.3, the following two test cases have been chosen:
// testcase 01
price = calculate_price(10000.00,2000.00,1000.00,3,0);
test_ok = test_ok && (abs(price–12900.00) < 0.01);

// testcase 02
price = calculate_price(25500.00,3450.00,6000.00,6,0);
test_ok = test_ok && (abs(price-34050.00) < 0.01);

The test cases cause the execution of the following edges of the graph:
Test case 01: a, b, c, j, m, n
Test case 02: a, b, c, j, m, n

43% branch coverage 
achieved

The edges d, e, f, g, h, i, k, l have not been executed. The two test cases covered 
only 43% of the branches (6 out of 14). Test case 02 gives no improvement of the 
coverage and is not necessary for branch coverage. However, considering the 
specification, test case 02 should have led to execution of more statements 
because a different discount should have been calculated (with five or more 
pieces of extra equipment).

To increase test coverage, the following further test cases are specified:
// testcase 03
price = calculate_price(10000.00,2000.00,1000.00,0,10);
test_ok = test_ok && (abs(price–12000.00) < 0.01);

// testcase 04
price = calculate_price(25500.00,3450.00,6000.00,6,15);
test_ok = test_ok && (abs(price–30225.00) < 0.01);

These test cases cause the execution of the following edges of the graph:
Test case 03: a, d, g, h, i, j, k, l, n
Test case 04: a, b, c, j, k, l, n

86% path coverage achieved These test cases lead to execution of further edges (d, g, h, i, k, and l) and thus 
increase branch coverage to 86%. Edges e and f have not yet been executed.

Evaluation of the conditions Before trying to reach the missing edges by further test cases, the conditions 
of the IF statements are analyzed more closely, that is, the source code is analyzed 
in order to define further test cases. To get to the edges e and f, the result of the 
first condition (extras  3) must be false in order to execute the ELSE-part. In this 
ELSE-part, the condition (extras  5) must be true. Therefore, a value has to be 
found that meets the following condition:

¬(extras 3) AND (extras 5)

No such value exists and the missing edges can never be reached. The source 
code contains a defect.
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Example: 
Relationship between 
the measures

This example should clarify the relationship between statement, branch, and path 
coverage as well. The test object consists of altogether three IF statements; two are 
nested and the third is placed separately from the others (figure 5-10).

All statements (nodes) are executed by the following sequence of edges in the 
graph:

a, b, c, j, k, l, n
a, d, e, f, i, j, k, l, n
a, d, g, h, i, j, k, l, n

These sequences are sufficient to achieve 100% statement coverage. But not all 
branches (edges) have been covered yet. The edge m is still missing. An execution 
sequence might look like this:

a, b, c, j, m, n

This new sequence can replace the first execution sequence shown previously. 
With the resulting three test cases, which result in these three execution 
sequences, 100% branch coverage is achieved.

Further paths 
through the graph

But, even for this simple program fragment, there are still possibilities to trav-
erse the graph differently and thus take care of all paths through the graph. Until 
now, the following paths have not been executed yet:

a, d, e, f, i, j, m, n
a, d, g, h, i, j, m, n

Altogether, six different paths through the source code result (the three possible 
paths through the graph before edge j multiplied by two for the two possible 
paths after edge j). There is the precondition that the conditions are independent 
from each other and the edges can be combined freely.

If there are loops in the source code, then every possible number of loop 
repetitions is counted as a possible path through the program fragment. It 
is obvious that 100% path coverage in testing is not feasible for a nontrivial 
program.

5.2.4 Further White Box Techniques

In addition to the most common techniques described here, there are a 
number of other white box test techniques that can be used for evaluating 
test objects. You can find out more about them in [Myers 79], [Beizer 90], 
and [Pol 98]. The following section describes one technique in a little more 
detail.
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Excursion
Data-flow-based techniques

A number of techniques use the flow of data through the test object as the basis for 
identifying test cases. Primarily, the data usages in the test object are verified. The 
use of each variable is analyzed, whereby the definitions of and read/write access 
to variables are distinguished from each other. These techniques may find faults 
where a value of a variable in the test object causes failures when it is used in other 
places. Furthermore, the technique verifies whether the value of a variable is used 
to create other variables or if it is used to calculate the logical value of a condition. 
This information allows defining various data flow criteria, which can then be cov-
ered by test cases. A detailed description of data-flow-based techniques can be 
found in [Clarke et al. 85].

5.2.5 General Discussion of the White Box Technique

Determine the test intensity The basis for all of the white box techniques described is the source code.
Adequate test case design techniques can be chosen and applied 

depending on the complexity of the program structure. The intensity of 
the test depends on the source code and the selected technique.

Useful for lower test levels The white box techniques we’ve described are appropriate for the 
lower test levels. For example, it is not very reasonable to require coverage 
of single statements or branches in a system test because system testing is 
not the right method to check single statements or conditions in the code.

Coverage is desirable even 

at higher test levels

The concept of coverage can be applied to other test levels above the 
code level. For example, during an integration test, we can assess what 
percentage of modules, components, or classes are executed during the 
test. This results in module, component, or class coverage. The required 
percentage value can be determined in advance and checked during test 
execution.

“Missing source code” 

 is not considered

Missing implementation of requirements is impossible to find for 
white box techniques. White box techniques can verify only code that 
exists, that is, requirements that are implemented in the program, not code 
that should be there but isn’t. Thus, other test design techniques are 
required to find omissions.

5.2.6 Instrumentation and Tool Support

Determination of the 

executed program parts

Code-based white box techniques require that different program parts are 
executed and that conditions get different logical values. To be able to 
evaluate the test, it must be determined which program parts have already 
been executed and which haven’t. To do this, the test object must be 
instrumented at strategically relevant spots before test execution. 
➞Instrumentation often works this way: The tool inserts counters in the 
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program and initializes them with zero. During program execution, the 
counters are incremented when they are passed. At the end of the test exe-
cution, the counters contain the number of passes through the correspond-
ing program parts. If a counter remained zero during the test, then the cor-
responding program part has not been executed.

Use toolsThe instrumentation, the evaluation of the test runs, and the calcula-
tion of the achieved coverage should not be done manually because this
would require too many resources and a manual instrumentation is error 
prone. Numerous tools perform these tasks (see section 7.1.4). These tools 
are important for white box testing because they increase productivity and 
indirectly improve the quality of the test object.

5.3 Intuitive and Experience-Based Test Case 
Determination

Besides the systematic approaches, intuitive determination of test cases 
should be performed. The systematically identified test cases may be sup-
plemented by test cases designed using the testers’ intuition. The tech-
niques are also called experience based because they depend on the expe-
rience of the testers. Intuitive testing can detect faults overlooked by 
systematic testing. It is therefore always advisable to perform additional 
intuitive testing.

Intuitive skill and experience 

of the testers

The basis of this method is the skill, experience, and knowledge of the 
tester to select test cases that uncover expected problems and their symp-
toms (failures). A systematic approach is not used. The test cases are based 
on where faults have occurred in the past or the tester’s ideas of where 
faults might occur in the future. This type of test case design is also called 
➞error guessing and is used very often in practice.

Knowledge in developing similar applications and using similar tech-
nologies should also be used when designing test cases, in addition to 
experience in testing. If, for example, failures were found in previous pro-
jects in which a certain programming language was used, it is reasonable 
to use those failures when you are designing the tests in the actual project 
if you are using the programming language that caused the failures. One 
technique for intuitive testing, exploratory testing, will be discussed in 
more detail.

Exploratory testingIf the documents, which form the basis for test design, are of low qual-
ity, are obsolete, or do not exist at all, so-called exploratory testing may 
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help. In the extreme case, only the program exists. The technique is also 
applicable when time is severely restricted because it uses much less time 
than other techniques. The approach is mainly based on the intuition and 
experience of the tester.

The approach 

of exploratory testing

The test activities in exploratory testing are executed nearly in parallel. 
The structured test process is not applied. An explicit previous planning of 
the test activities is not done. The possible elements of the test object (its 
specific tasks and functions) are “explored.” It is then decided which parts 
will be tested. Only a few test cases are executed and their results are ana-
lyzed. By executing the test cases, the “unknown” behavior of the test 
object will be determined further. Anything considered “interesting,” as 
well as other information, is then used to determine the next test cases. In 
this step-by-step manner, knowledge about the test object under test is 
collected. It becomes clearer what the test object does and how it works, 
which quality problems there could be, and which expectations to the pro-
gram should be fulfilled. One result of exploratory testing may be that it 
becomes clear which test techniques can be applied if there is time left in 
the project.

Test charter It makes sense to restrict exploratory testing to certain elements of the 
program (certain tasks or functions). The elements are further decom-
posed. The term test charter is used for such smaller parts. It should not 
take more than one or two hours to test a test charter. When executing test 
charters, the following questions are of interest:

■ Why? What is the goal of the test run?
■ What? What is to be tested?
■ How? Which testing method should be used?
■ What? What kind of problems should be found?

Main features 

of exploratory testing

The generic ideas of exploratory testing are as follows:
■ Results of one test case influence the design and execution of further 

test cases.
■ During testing, a “mental” model of the program under test is created. 

The model contains how the program “works” and how it behaves or 
how it should behave.

■ The test is run against this model. The focus is to find further aspects 
and behaviors of the program that are still not part of the “mental” 
model or are differing from aspects found before.
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Neither black box 
nor white box

All the approaches for intuitive test case determination cannot be associ-
ated explicitly with white box or black box techniques because neither the 
requirements nor the source code are exclusively the basis for the consid-
erations and tests. They should be applied more in the higher test levels. In 
the lower ones, usually sufficient information such as source code or 
detailed specification is accessible for applying systematic techniques.

Not to be used as first or only 

technique

Intuitive test case determination should not be applied as the primary 
testing technique. Instead, this technique should be used complete the test 
cases and to support the systematic test design techniques.

Test Cases

Knowledge for determination of additional test cases can be drawn from 
many sources.

Example: 
Tester knowledge for 
the CarConfigurator

In the development project for the CarConfigurator, the testers are very familiar 
with the previous system. Many of them have tested this system before. They 
know the weaknesses the system had and they know the problems the car dealers 
had with the operation of the old software (from hotline data and from discus-
sions with car salespeople). Employees from the marketing department know for 
the business-related test which vehicles in which configurations are sold often 
and which theoretically possible combinations of extra equipment might not 
even be shippable. They use this experience to intuitively prioritize the systemat-
ically identified test cases and to complete them by additional test cases. The test 
manager knows which of the developer teams act under the most severe time 
pressure and even work on weekends. Hence, she will test the components from 
these teams more intensively.

Using all knowledgeTesters should use all their knowledge to find additional test cases. Natu-
rally, the pre- and postconditions, the expected outcomes, and the 
expected behavior of the test object must be defined in advance for intui-
tive testing as well.

Hint■ Because extensive experience is often only available in the minds of the experi-
enced testers, maintaining a list with possible errors, faults, and suspicious situ-
ations might be very helpful. Frequently occurring errors, faults, and failures 
are noted in the list and are thus available to all the testers. With the help of the 
possible trouble areas and critical situations that have been identified, additio-
nal test cases can be designed.
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■ The list may even be beneficial to developers because it indicates in advance 
what potential problems and difficulties might occur. These can be considered 
during implementation and thus serve for error prevention.

Definition of the Test Exit Criteria

A test exit criterion 

 is not definable

Unlike with the systematic techniques, a criterion for termination cannot 
be specified. If the previously mentioned list exists, then a certain com-
pleteness can be verified against the list.

The Value of the Technique

Mostly successful 

in finding more defects

Intuitive test case determination and exploratory testing can often be used 
with good success. They are a sensible addition to systematic techniques. 
The success and effectiveness of this approach depend very much on test-
ers’ skill and intuition and their previous experience with similar applica-
tions and the technologies used. Such approaches can also contribute to 
finding holes and errors in the risk analysis. If intuitive testing is applied 
in addition to systematic testing, inconsistencies in the test specification 
not previously detected can be found. Intensity and completeness of intu-
itive and exploratory test design cannot be measured.

5.4 Summary
Which technique 

and when to use it

This chapter has introduced a number of techniques for testing of soft-
ware.29 The question is, When should each technique be applied? The fol-
lowing list includes answers to this question and presents a reasonable 
approach. The general goal is to identify sufficiently different test cases in 
order to be able to find existing faults with a certain probability and with 
as little effort as possible. The techniques for test design should therefore 
be chosen appropriately.

However, before designing a test, you should check some factors that 
have considerable influence on the selection or even prescribe the applica-
tion of certain test methods. The selection of techniques can depend on 
the following different circumstances and conditions:

29. There exist other techniques not described in this book. This applies especially to inte-
gration testing, testing of distributed applications, and testing of real-time and embed-
ded systems. Some of these techniques are part of the Advanced Level Tester 
certification scheme. More information can be found in [Bath 08].
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■ The kind of test object
The complexity of the program text can vary considerably. Depending 
on this, adequate test techniques should be chosen. If, for example, 
decisions in the program are combined from several atomic conditions, 
branch coverage is not sufficient. A suitable technique to check the 
conditions should be chosen depending on the criticality and the risk 
in case of failure.

■ Formal documentation and the availability of tools
If specification or model information is available in a formal docu-
ment, it can be fed directly into test design tools, which then derive test 
cases. This very much decreases the effort required to design the tests.

■ Conformance to standards
Industry and regulatory standards may require use of certain test tech-
niques and coverage criteria. Compliance to such standards is often 
mandatory for safety-critical software or when high reliability is 
required.

■ Tester experience
Tester experience may lead to the choice of special techniques. A tester 
will, for example, reuse techniques that have led to finding serious 
faults earlier.

■ Customer wishes
The customer may require the use of specific test techniques and even 
the test coverage to be achieved. This has the advantage that at least 
these techniques will be applied during development. This may lead to 
fewer failures in acceptance testing.

■ Risk assessment
The expected risk dictates more or less the test activities, that is, the 
choice of techniques and the intensity of the execution. Risk-prone 
areas should be tested more thoroughly.

■ Additional factors
Finally, there are factors like the availability of the specification and 
other documentation, the knowledge and skill of the test personnel, 
time and budget, the test level, and previous experience with what kind 
of defects occur most often and with which test techniques these have 
been found. They can all have a large influence on selecting the testing 
techniques.
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Test design techniques cannot be specified in a standard way. Their selec-
tion should always be based on a thoughtful decision. The following list 
should help in selecting the most applicable test technique.

Testing functionality ■ The system functioning correctly is certainly of great relevance. The 
functionality of the test object must be sufficiently verified. The devel-
opment of all test cases, regardless of which technique or procedure 
was used, includes determining the expected results and reactions of 
the test object. This ensures a verification of the functionality for every 
evaluation of the test cases. Comparing the actual with the expected 
outputs and reactions contains a verification of the functionality. 

Equivalence class partition 

combined with boundary 

value analysis

■ When you are designing test cases, equivalence class partitioning in 
combination with boundary value analysis should be applied for every 
test object. When you are executing these test cases, you should use the 
appropriate tools for measuring code coverage to find the test coverage 
already achieved (see section 7.1.4).

Consider execution history ■ If different states have an influence on the operating sequence in the 
test object, state transition testing must be applied. Only state transi-
tion testing verifies the cooperation of the states, transitions, and the 
corresponding behavior of the functions adequately.

■ If dependencies between the input data are given and must be taken 
care of in the test, these dependencies can be modeled using cause-
effect graphs or decision tables. The corresponding test cases can be 
taken from the decision table.

■ If there are many parameters or settings with unknown dependencies, 
use pairwise testing for them.

■ For system testing, use cases (displayed in use case diagrams) can be 
applied as a basis for designing test cases.

■ In component and integration testing, coverage measurements should 
be included with all black box techniques. The parts of the test object 
still not executed should then be specifically tested with a white box 
test design technique. Depending on the criticality and nature of the 
test object, appropriate extensive white box technique must be selected.

Minimum criterion: 

 branch coverage

■ The minimum criterion should be 100% branch coverage. If complex 
decisions exist in the test object, then condition determination testing 
is the appropriate technique to find faulty decisions.

■ In measuring coverage, loops should be repeated more than once. For 
critical parts of the system, the loops must be verified using the appro-
priate methods (boundary interior-path test and structured path test 
[Howden 75]).
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■ Complete path coverage of a test object is usually not achievable. It 
should be considered a mere theoretical measure and is of little practi-
cal importance because of the great cost and because it is impossible to 
achieve for programs with loops. It is very seldom used in practice.

■ It is sensible to apply white box techniques at lower test levels while 
black box techniques can be applied in all test levels, especially the 
higher ones.

■ Intuitive determination of test cases should not be ignored. It is a good 
supplement to systematic test design methods.

Hint■ Testing always comprises the combination of different techniques because no 
testing technique exists that covers all aspects to be considered in testing 
equally well.

■ The criticality and the expected risk in case of failure guide the selection of the 
testing techniques and the intensity of the execution.

■ The basis for the selection of the white box technique is the structure of the test 
object. If, for example, no complex decisions exist in the test object, the use of 
condition determination testing makes no sense.



168 5 Dynamic Analysis – Test Design Techniques



6 Test Management 169
6 Test Management

This chapter describes ways to organize test teams, which qualifications are 
important, the tasks of a test manager, and which supporting processes must 
be present for efficient testing.

6.1 Test Organization

6.1.1 Test Teams

Testing activities are necessary during the entire software product life cycle 
(see chapter 3). They should be well coordinated with the development 
activities. The easiest solution is to let the developer perform the testing.

However, because there is a tendency to be blind to our own errors, 
it is much more efficient to let different people perform testing and 
development and to organize testing as independently as possible from 
development.

Benefits 
of independent testing

Independent testing provides the following benefits:
■ Independent testers are unbiased and thus find additional and different 

defects than developers find.
■ An independent tester can verify (implicit) assumptions made by 

developers during specification and implementation of the system.

Possible drawbacks of 

independent testing

But there may also be drawbacks to independent testing:

■ Too much isolation may impair the necessary communication between 
testers and developers.

■ Independent testing may become a bottleneck if there is a lack of nec-
essary resources.

■ Developers may lose a sense of responsibility for quality because they 
may think, “the testers will find the ➞problems anyway.”
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Models of independent 

testing

The following models or options for independence are possible:
1. The development team is responsible for testing, but developers test 

each other’s programs, i.e., a developer tests the program of a colleague.
2. There are testers within the development team; these testers do all the 

test work for their team.
3. One or more dedicated testing teams exist within the project team 

(these teams are not responsible for development tasks). Typically, 
team members from the business or IT department work as independ-
ent testers.

4. Independent test specialists are used for specific testing tasks (such as 
performance test, usability test, security test, or for showing conform-
ance to standards and regulatory rules).

5. A separate organization (testing department, external testing facility, 
test laboratory) takes over the testing (or important parts of it, such as 
the system test).

When to choose 

 which model

For each of these models, it is advantageous to have testing consultants 
available. These consultants can support several projects and can offer 
methodical assistance in areas such as training, coaching, test automation, 
etc. Which of the previously mentioned models is appropriate depends 
on—among other things—the current test level.

Component Testing

Testing should be close to development. Although often used, it is defi-
nitely the worst choice to allow developers to test their own programs. 
Independent testing such as in model 1 is easy to organize and would cer-
tainly improve quality. Testing such as in model 2 is useful, if a sufficient 
number of testers relative to the number of developers can be made avail-
able. However, with both testing models, there is the risk that the partici-
pating people essentially consider themselves developers and thus will 
neglect their testing responsibilities.

To prevent this, the following measures are recommended:

Hint ■ Project or test management should set testing standards and rules, and require 
test logs from the developers.

■ To provide support for applying systematic testing methods, testing specialists 
should, at least temporarily, be called in as coaches.
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Integration Testing

When the same team that developed the components also performs inte-
gration and integration testing, this testing can be organized as for compo-
nent testing (models 1, 2).

If components originating from several teams are integrated, then 
either a mixed integration team with representatives from the involved 
development groups or an independent integration team should be 
responsible. The individual development team may have their own view 
about their own component and therefore may overlook faults. Depending 
on the size of the development project and the number of components, 
models 3, 4, and 5 should be considered here.

System Testing

The final product shall be considered from the point of view of the cus-
tomer and the end user. Therefore, independence from the development 
team is crucial. This leaves only models 3, 4, and 5.

Example:
Organization of the 
VSR tests

In the VSR project, each development team is responsible for component testing. 
These teams are organized according to the previously mentioned models 1 and 
2. In parallel to these development teams, an independent testing group is estab-
lished. This testing group is responsible for integration and system testing. Figure 
6-1 shows the organization.

Two or three employees from each responsible user department (sales, mar-
keting, etc.) are made available for the functional or business-process-based test-
ing of every subsystem (ContractBase, DreamCar, etc.). These people are familiar 
with the business processes to be supported by the particular subsystem and 
know the requirements “their” test object should fulfill from the users’ point of 
view. They are experienced PC users, but not IT experts. It is their task to 
support the test specialists in specifying business-related functional test cases 
and to perform these tests. When the testing activities are started, they have 
received training in basic testing procedures (test process, specification, execu-
tion, and logging).

➞Test loggingAdditionally, test personnel consists of three to five IT and test specialists, 
responsible for integration activities, nonfunctional tests, test automation, and 
support of test tools (“technical test”). A test manager, responsible for test plan-
ning and test control, is in charge of the test team. The manager’s tasks also com-
prise coaching of the test personnel, especially instructing the staff on testing the 
business requirements.
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6.1.2 Tasks and Qualifications

Specialists with knowledge covering the full scope of activities in the test 
process should be available. The following roles should be assigned, ideally 
to specifically qualified employees:

Roles and qualification 

profiles

■ Test manager (test leader): Test planning and test control expert(s), 
possessing knowledge and experience in the fields of software testing, 
quality management, project management, and personnel manage-
ment. Typical tasks may include the following:
• Writing and coordinating the test policy for the organization
• Developing the test approach and test plan as described in section 6.2.2
• Representing the testing perspective in the project
• Procuring testing resources
• Selecting and introducing suitable test strategies and methods, in-

troducing or improving testing tools, organizing tools training, de-
ciding about test environment and test automation

• Introducing or optimizing supporting processes (e.g., problem 
management, configuration management) in order to be able to 
trace back changes and securing reproducibility of the tests

• Introducing, using, and evaluating metrics defined in the test plan
• Regularly adapting test plans based on test results and test progress
• Identifying suitable metrics for measuring test progress, and evalu-

ating the quality of the testing and the product
• Writing and communicating test reports 
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Figure 6–1
VSR project organization
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■ Test designer (test analyst): Expert(s) in test methods and test specifi-
cation, having knowledge and experience in the fields of software test-
ing, software engineering, and (formal) specification methods. Typical 
tasks may include the following:
• Reviewing requirements, specifications, and models for testability 

and in order to design test cases
• Creating test specifications
• Preparing and acquiring test data

■ Test automator: Test automation expert(s) with knowledge of testing 
basics, programming experience, and deep knowledge of the testing 
tools and script languages. Automates tests as required, making use of 
the test tools available for the project.

■ Test administrator: Expert(s) for installing and operating the test 
environment (system administrator knowledge). Sets up and supports 
the test environment (often coordinating with general system adminis-
tration and network management).

■ Tester:1 Expert(s) for executing tests and reporting failures (IT basics, 
basic knowledge of testing, using the test tools, understanding the test 
object). Typical tasks are as follows:
• Reviewing test plans and test cases
• Using test tools and test monitoring tools (for example, to measure 

performance)
• Executing and logging tests, including evaluating and documenting 

the results and detected deficiencies

Certified TesterIn this context, what does the Certified Tester training offer? The basic 
Certified Tester training (Foundation Level) qualifies for the “tester” role 
(without covering the required IT basics). This means that a Certified 
Tester knows why discipline and structured work are necessary. Under the 
supervision of a test manager, a Certified Tester can manually execute and 
document tests. He or she is familiar with basic techniques for test speci-
fication and test management. Every software developer should also know 
these foundations of software testing to be able to adequately execute the 
testing tasks required by organizational models 1 and 2. Before someone is 
able to fulfill the role of a test designer or test manager, appropriate expe-
rience as a tester should be gathered. The second educational level 
(Advanced Level) offers training for the tasks of the designer and manager.

1. The term tester is often also used as generic term for all the previously mentioned roles.
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Social competence is 

important

To be successful, in addition to technical and test-specific skills, a tester 
needs social skills: 

■ Ability to work in a team, and political and diplomatic aptitude
■ Skepticism (willingness to question apparent facts)
■ Persistence and poise
■ Accuracy and creativity
■ Ability to get quickly acquainted with (complex fields of) application

Multidisciplinary team Especially in system testing, it is often necessary to extend the test team by 
adding IT specialists, at least temporarily, to perform work for the test 
team. For example, these might be database administrators, database 
designers, or network specialists. Professional specialists from the applica-
tion field of the software system currently being tested or the business are 
often indispensable. Managing such a multidisciplinary test team can be 
difficult even for experienced test managers.

Specialized software test 

service providers

If appropriate resources are not available within the company, test 
activities can be given to external software testing service providers. This 
is similar to letting an external software house develop software. Based on 
their experience and their use of predefined solutions and procedures, 
these test specialists are able to provide an optimal test for the project. 
They can also provide missing specialist skills from each of the previously 
mentioned qualification profiles for the project.

6.2 Planning

Testing should not be the only measure for quality assurance (QA). It 
should be used in combination with other quality assurance measures. 
Therefore, an overall plan for quality assurance is needed that should be 
documented in the quality assurance plan.

6.2.1 Quality Assurance Plan

Guidelines for structuring the quality assurance plan can be found in IEEE 
standard 730-2002 [IEEE 730-2002]. The following subjects shall be con-
sidered (additional sections may be added as required. Some of the mate-
rial may also appear in other documents).



6.2 Planning 175
During quality assurance planning, the role the tests play as special, ana-
lytical measures of quality control is roughly defined. The details are then 
determined during test planning and documented in the test plan.

6.2.2 Test Plan

A task as extensive as testing requires careful planning. This planning and 
test preparation starts as early as possible in the software project. The test 
policy of the organization and the objectives, risks, and constraints of the 
project as well as the criticality of the product influence the test plan.

Test planning activitiesThe test manager might participate in the following planning activities:

■ Defining the overall approach to and strategy for testing (see section 
6.4)

■ Deciding about the test environment and test automation
■ Defining the test levels and their interaction, and integrating the test-

ing activities with other project activities

Contents of a Software Quality Assurance Plan as defined 
in IEEE 730-2002:a

 1. Purpose 
 2. Reference documents 
 3. Management 
 4. Documentation 
 5. Standards, practices, conventions, and metrics 
 6. Software reviews 
 7. Test 
 8. Problem reporting and corrective action 
 9. Tools, techniques, and methodologies 
10. Media control 
11. Supplier control 
12. Records collection, maintenance, and retention 
13. Training 
14. Risk management
15. Glossary 
16. SQA Plan Change Procedure and History

a. IEEE Standard 730 in its new form from 2013 [IEEE 730-2013] has a new title, 
Standard for Software Quality Assurance Processes, and does not contain a standard 
layout for a software quality assurance plan anymore.
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■ Deciding how to evaluate the test results
■ Selecting metrics for monitoring and controlling test work, as well as 

defining test exit criteria
■ Determining how much test documentation shall be prepared and 

determining templates
■ Writing the test plan and deciding on what, who, when, and how much 

testing
■ Estimating test effort and test costs; (re)estimating and (re)planning 

the testing tasks during later testing work

The results are documented in the test plan. IEEE Standard 829-1998 
[IEEE 829] provides a template.

This structure2 works well in practice. The sections listed will be found in 
real test plans in many projects in the same, or slightly modified, form. The 

Test Plan according to IEEE 829-1998

 1. Test plan identifier
 2. Introduction
 3. Test items
 4. Features to be tested
 5. Features not to be tested
 6. Approach
 7. Item pass/fail criteria (test exit criteria)
 8. Suspension criteria and resumption requirements
 9. Test deliverables
10. Testing tasks
11. Environmental needs
12. Responsibilities
13. Staffing and training needs
14. Schedule
15. Risk and contingencies
16. Approvals

2. A detailed description of the listed points in IEEE 829-1998 can be found in Appendix 
A. The new standard [IEEE 829-2008] shows an outline for a master test plan and a 
level test plan. IEEE Standard 1012 ([IEEE 1012]) gives another reference structure for 
a verification and validation plan. This standard can be used for planning the test strat-
egy for more complex projects.
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new edition of IEEE 829-2008 [IEEE 829-2008] differentiates between 
“Master Test Plan” and “Level Test Plan.” The overall test plan (“Master Test 
Plan”) is required for every project. The different level test plans are 
optional, depending on the criticality of the product developed. An exist-
ing test plan according to IEEE 829-1998 can be changed into the structure 
of the master test plan in IEEE 829-2008 using mapping or a cross-refer-
ence listing. The new standard also has a different approach: There is an 
explicit requirement for tailoring the test documentation depending on 
product risks and organizational needs. The standard encourages putting 
some information from the plans into tools or, if necessary, other plans.

When preparing for an exam using the Foundation syllabus version 
2015, IEEE Standard 829-2008, not 1998, should be studied!

Test planning is a continuous activity for the test manager throughout 
all phases of the development project. The test plan and related plans must 
be updated regularly, based on feedback from test activities and reacting to 
changing project risks.

6.2.3 Prioritizing Tests

Even with good planning and control, it is possible that the time and 
budget for the total test, or for a certain test level, are not sufficient for exe-
cuting all planned test cases. In this case, it is necessary to select test cases 
in a suitable way. Even with a reduced number of executable test cases, it 
must be assured that as many as possible critical faults are found. This 
means test cases must be prioritized. 

Prioritization ruleTest cases should be prioritized so that if any test ends prematurely, 
the best possible test result at that point of time is achieved.

The most important test 

cases first

Prioritization also ensures that the most important test cases are exe-
cuted first. This way important problems can be found early.

The criteria for prioritization, and thus for determining the order of exe-
cution of the test cases, are outlined next. Which criteria are used  depends 
on the project, the application area, and the customer requirements.

Criteria for prioritizationThe following criteria for prioritization of test cases may be used: 

■ The usage frequency of a function or the probability of failure in soft-
ware use. If certain functions of the system are used often and they 
contain a fault, then the probability of this fault leading to a failure is 
high. Thus, test cases for this function should have a higher priority 
than test cases for a less-often-used function.
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■ Failure risk. Risk is the combination (mathematical product) of sever-
ity and failure probability. The severity is the expected damage. Such 
risks may be, for example, that the business of the customer using the 
software is impaired, thus leading to financial losses for the customer. 
Tests that may find failures with a high risk get higher priority than 
tests that may find failures with low risks (see also section 6.4.3).

■ The visibility of a failure for the end user is a further criterion for pri-
oritization of test cases. This is especially important in interactive sys-
tems. For example, a user of a city information service will feel unsafe if 
there are problems in the user interface and will lose confidence in the 
remaining information output.

■ Test cases can be chosen depending on the priority of the require-
ments. The different functions delivered by a system have different 
importance for the customer. The customer may be able to accept the 
loss of some of the functionality if it behaves wrongly. For other parts, 
this may not be possible.

■ Besides the functional requirements, the quality characteristics may 
have differing importance for the customer. Correct implementation 
of the important quality characteristics must be tested. Test cases for 
verifying conformance to required quality characteristics get a high 
priority.

■ Prioritization can also be done from the perspective of development or 
system architecture. Components that lead to severe consequences 
when they fail (for example, a crash of the system) should be tested 
especially intensively.

■ Complexity of the individual components and system parts can be 
used to prioritize test cases. Complex program parts should be tested 
more intensively because developers probably introduced more faults. 
However, it may happen that program parts seen as easy contain many 
faults because development was not done with the necessary care. 
Therefore, prioritization in this area should be based on experience 
data from earlier projects run within the organization.

■ Failures having a high project risk should be found early. These are 
failures that require considerable correction work that in turn requires 
special resources and leads to considerable delays of the project (see 
section 6.4.3).

In the test plan, the test manager defines adequate priority criteria and 
priority classes for the project. Every test case in the test plan should get a 
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priority class using these criteria. This helps in deciding which test cases 
can be left out if resource problems occur.

Where there are many 

defects, there are probably 

more

Where many faults were found before, more are present. This phe-
nomenon occurs often in projects. To react appropriately, it must be pos-
sible to change test case priority. In the next test cycle (see section 6.5), 
additional test cases should be executed for such defect-prone test objects. 

Without prioritizing test cases, it is not possible to adequately allocate 
limited test resources. Concentration of resources on high-priority test 
cases is a MUST.

6.2.4 Test Entry and Exit Criteria

Defining clear test entry and exit criteria is an important part of test plan-
ning. They define when testing can be started and stopped (totally or 
within a test level).

Test start criteriaHere are typical criteria, or checkpoints, that need to be fulfilled 
before executing the planned tests:

■ The test environment is ready.
■ The test tools are ready for use in the test environment.
■ Test objects are installed in the test environment.
■ The necessary test data is available.

These criteria are preconditions for starting test execution. They prevent 
the test team from wasting time trying to run tests that are not ready.

Exit criteriaExit criteria are used to make sure test work is not stopped by chance 
or prematurely. They prevent tests from ending too early, for example, 
because of time pressure or because of resource shortages. But they also 
prevent testing from being too extensive. Here are some typical exit crite-
ria and corresponding metrics or indicators:

■ Achieved test coverage: Tests run, covered requirements, code cover-
age, etc.

■ Product quality: Defect density, defect severity, failure rate, and relia-
bility of the test object

■ Residual risk: Tests not executed, defects not repaired, incomplete cov-
erage of requirements or code, etc.

■ Economic constraints: Allowed cost, project risks, release deadlines, 
and market chances

The test manager defines the project-specific test exit criteria in the test 
plan. During test execution, these criteria are then regularly measured and 
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evaluated and serve as the basis for decisions by test and project manage-
ment.

6.3 Cost and Economy Aspects

Testing can be very costly and can constitute a significant cost factor in 
software development. How much effort is adequate for testing a specific 
software product? When is the test cost higher than the possible benefit? 

To answer these questions, one must understand the potential defect 
costs due to lack of checking and testing. Then, one has to compare defect 
costs and testing costs.

6.3.1 Costs of Defects

If testing activities are reduced or cut out completely, there will be more 
undetected faults and deficiencies in the product. These remain in the 
product and may lead to the following costs:

Costs due to product 

deficiencies

■ Direct defect costs: Costs that arise for the customer due to failures 
during operation of the software product (and that the vendor may 
have to pay for). Examples are costs due to calculation mistakes (data 
loss, wrong orders, damage of hardware or parts of the technical instal-
lation, damage to personnel); costs because of the failure of software-
controlled machines, installations, or business processes; and costs due 
to installation of new versions, which might also require training 
employees. Very few people think of these costs, but they can be huge. 
The impact from just the time it takes to install a new version at all cus-
tomer sites can be enormous.

■ Indirect defect costs: Costs or loss of sales for the vendor that occur 
because the customer is dissatisfied with the product. Some examples 
include penalties or reduction of payment for failure to meet contrac-
tual requirements, increased costs for the customer hotline and sup-
port, bad publicity, even legal costs such as loss of license (for example, 
for safety critical software).

■ Costs for defect correction: Costs paid to vendors for fault correction. 
For example, time needed for failure analysis, correction, retest and 
regression test, redistribution and reinstallation, new customer and 
user training, delay of new products due to tying up the developers 
with maintenance of the existing product, decreasing competitiveness.
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 Risk analysisIt is hard to determine which types of costs will occur in reality, how likely 
it is, and how expensive it will be, that is, how high the failure cost risk is 
for a project. This risk depends of course on the kind and size of the soft-
ware product, the type and business area of the customer, the design of the 
contract, legal constraints, the type of failures, and the number of installa-
tions or end users. There are certainly big differences between software 
developed specifically for a customer and commercial off-the-shelf prod-
ucts. In case of doubt, all these influencing factors must be evaluated in a 
project-specific risk analysis.

Finding defects as early as 

possible lowers the costs

It is crucial to find faults as early as possible after their creation. Defect 
costs grow rapidly the longer a fault remains in the product (one of the 
fundamental principles in chapter 2).  This is independent of how high the 
risk of a fault really is.

■ A fault that is created very early (e.g., an error in the requirements defi-
nition) can, if not detected, produce many subsequent defects during 
the following development phases (“multiplication” of the original 
defect).

■ The later a fault is detected, the more corrections are necessary. Previ-
ous phases of the development (requirements definition, design, and 
programming) may even have to be partly repeated. 

A reasonable assumption is that with every test level, the correction costs 
for a fault double with respect to the previous level. More information on 
this can be found in [URL: NIST Report]. 

If the customer has already installed the software product, there is the 
additional risk of direct and indirect defect costs. In the case of safety-crit-
ical software (control of technical installations, vehicles, aircraft, medical 
devices, etc.), the potential consequences and costs can be disastrous.

6.3.2 Cost of Testing

The most important action to reduce or limit risk is to plan verification 
and test activities. But there are plenty of factors that influence the cost3 of 
such testing activities, and in practice they are difficult to quantify. The fol-
lowing list shows the most important factors that a test manager should 
take into account when estimating the cost of testing:

3. A detailed discussion can also be found in [Pol 98] and [Pol 02].
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■ Maturity4 of the development process
• Stability of the organization
• Developer’s error rate
• Change rate for the software
• Time pressure because of unrealistic plans
• Validity, stability, and correctness of plans
• Maturity of the test process, and the discipline in configuration, 

change, and incident management

■ Quality and testability of the software
• Number, severity, and distribution of defects in the software
• Quality, expressiveness, and relevance of the documentation and 

other information used as test basis
• Size and type of the software and its system environment
• Complexity of the problem domain and the software (e.g., cyclo-

matic number, see section 4.2.5)

■ Test infrastructure
• Availability of testing tools
• Availability of test environment and infrastructure
• Availability of and experience with testing processes, standards, and 

procedures

■ Employee (project member) qualification 
• Tester experience and know-how about the field of testing
• Tester experience and know-how about test tools and test environ-

ment 
• Tester experience and know-how about the test object
• Collaboration between the tester, the developer, management, and 

customer

■ Quality requirements
• Intended test coverage
• Intended reliability or maximum number of remaining defects after 

testing
• Requirements for security and safety
• Requirements for test documentation5

4. There are different methods to assess the maturity of software development processes. 
More information can be found in the ISTQB Advanced Test Manager syllabus [URL: 
ISTQB].
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■ Test approach
• The testing objectives (themselves driven by quality requirements) 

and means to achieve them, such as number and comprehensiveness 
of test levels (component, integration, system test)

• The chosen test techniques (black box or white box)
• Test schedule (start and execution of the test work in the project or 

in the software life cycle)

The test manager’s influenceThe test manager can directly influence only a few of these factors. The 
manager’s perspective looks like this:

■ Maturity of the software development process
This cannot be influenced in the short run; it is a given and must be 
accepted as is. Influence in this area can only be exercised in the long 
run, using a process improvement program.

■ Testability of the software
This is very dependent on the maturity of the development process. A 
well-structured process with reviews leads to better-structured soft-
ware that is easier to test. This factor can only be influenced in the long 
run through a process improvement program.

■ Test infrastructure
Usually this is a given, but it may be improved during the project in 
order to save time and cost when it is used.

■ Qualification of the project members
This can be changed relatively fast by choosing different test personnel, 
but training may help in the longer run.

■ Quality goals
They are given by customers and other stakeholders and can be 
changed only slightly (by prioritization).

■ Test approach
This can be freely chosen and is the only way a test manager can control 
and monitor in the short run.

5. Medical devices and other safety-critical applications require certification by regula-
tion authorities like, for example, the FDA [URL: FDA]. Such certification follows stan-
dards, which require a certain level of test documentation.
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6.3.3 Test Effort Estimation

Before defining a schedule and assigning resources, the test manager must 
estimate the testing effort to be expected. 

General estimation 

approaches

For small projects, this estimation can be done in one step. For larger pro-
jects, separate estimations for each test level and test cycle may be necessary.

In general, two approaches for estimation of test effort are possible:

■ Listing all testing tasks; then letting either the task owner or experts 
who have estimation experience estimate each task

■ Estimating the testing effort based on effort data of former or similar 
projects, or based on typical values (e.g., average number of test cases 
run per hour)

The effort for every testing task depends on the factors described in the 
earlier section on testing costs (section 6.3.2). Most of these factors influ-
ence each other, and it is nearly impossible to analyze them completely. 
Even if no testing task is forgotten, task-driven test effort estimation tends 
to underestimate the testing effort. Estimating based on experience data of 
similar projects or typical values usually leads to better results.

Rule of thumb If no data is available, the following rule of thumb can be helpful: test-
ing tasks (including all test levels) in typical business application develop-
ment costs about 50% of the overall project resources.

6.4 Choosing the Test Strategy and Test Approach

A test strategy or approach defines the project’s testing objectives and the 
means to achieve them. It therefore determines testing effort and costs. 
Selecting an appropriate test strategy is one of the most important plan-
ning task decisions for a test manager. The goal is to choose a test approach 
that optimizes the relation between costs of testing and costs of possible 
defects as well as minimizes the risk (see section 6.4.3).

Cost-benefit relationship The test costs should, of course, be less than the costs that would be 
caused by surviving defects and deficiencies in the final product. But, very 
few software development organizations possess or bother to collect data 
that enables them to quantify the relation between costs and benefits. This 
often leads to intuitive rather than rational decisions about how much test-
ing is enough.
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6.4.1 Preventative vs. Reactive Approach

The point in time at which testers become involved highly influences the 
approach. We can distinguish two typical situations:

■ Preventive approaches are those in which testers are involved from the 
beginning: test planning and design start as early as possible. The test 
manager can really optimize testing and reduce testing costs. Use of the 
general V-model (see figure 3-1), including design reviews, etc., will 
contribute a lot to prevent defects. Early test specification and prepara-
tion, as well as application of reviews and static analysis, contribute to 
finding defects early and thus lead to reduced defect density during test 
execution. When safety-critical software is developed, a preventive 
approach may be mandatory.

■ Reactive approaches are those in which testers are involved (too) late 
and a preventive approach cannot be chosen: test planning and design 
starts after the software or system has already been produced. Never-
theless, the test manager must find an appropriate solution even in this 
case. One very successful strategy in such a situation is called explora-
tory testing. This is a heuristic approach in which the tester “explores” 
the test object and test design, test execution, and evaluation occur 
nearly concurrently (see also section 5.3).

When should testing 

be started?

Preventative approaches should be chosen whenever possible. Cost analy-
sis clearly shows the following:

■ The testing process should start as early as possible in the project.
■ Testing should continuously accompany all phases of the project.

Example:
VSR test planning

In the VSR project, test planning and test specification started immediately after 
the requirements document was approved. For each requirement, at least one test 
case was designed. The draft test specification created using this approach was 
subjected to a review. Representatives for the customer, the development staff, 
and the later system test staff were involved in this review. The result was that 
many requirements were identified as “unclear” or “incomplete.” Additionally, 
staff found incorrect or insufficient test cases.

Therefore, simply preparing reasonable tests and discussing them with the 
developers and stakeholders helped to find many problems long before the first 
test was run.
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6.4.2 Analytical vs. Heuristic Approach

During test planning and test design, the test manager may use different 
sources of information. Two extreme approaches are possible:
■ Analytical approach

Test planning is founded on data and (mathematical) analysis of it. The 
criteria discussed in section 6.3 will be quantified (at least partially) 
and their correlation will be modeled. The amount and intensity of 
testing are then chosen such that individual or multiple parameters 
(costs, time, coverage, etc.) are optimized.

■ Heuristic approach
Test planning is founded on experience of experts (from inside or out-
side the project) and/or on rules of thumb. Reasons may be that no 
data is available, mathematical modeling is too complicated, or the 
necessary know-how is missing.

The approaches used in practice are between these extremes and use (to 
different degrees) both analytical and heuristic elements:

■ Model-based testing uses abstract functional models of the software 
under test for test case design, to find test exit criteria, and to measure 
test coverage. An example is state-based testing (see section 5.1.3), 
where state transition machines are used as models.

■ Statistical or stochastic (model-based) testing uses statistical models 
about fault distribution in the test object, failure rates during use of the 
software (such as reliability growth models), or the statistical distribu-
tion of use cases (such as operational profiles) to develop a test 
approach. Based on this data, the test effort is allocated and test tech-
niques are chosen.

■ Risk-based testing uses information on project and product risks and 
directs testing to areas with high risk. This is described in more detail 
in the next section.

■ Process- or standard-compliant approaches use rules, recommenda-
tions,6 and standards (e.g., the V-model or IEEE 829) as a “cookbook.”

■ Reuse-oriented approaches reuse existing test environments and test 
material. The goal is to set up testing quickly by maximal reuse.

6. Such recommendations contain a lot of heuristics and experience-based knowledge.
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■ Checklist-based (methodical) approaches use failure and defect lists 
from earlier test cycles,7 lists of potential defects or risks,8 or prioritized 
quality criteria and other less formal methods.

■ Expert-oriented approaches use the expertise and “gut feeling” of 
involved experts (for the technology used or the application domain). 
Their personal feeling about the technologies used and/or usage 
domain influences and controls their choice of test approach.

These approaches are seldom used as they are described. Generally, a com-
bination of several approaches is used to develop the testing strategy.

6.4.3 Testing and Risk

Risk = damage × probabilityWhen looking for criteria to select and prioritize testing goals, test meth-
ods, and test cases, one of the best criteria is risk.

Risk is defined as the mathematical product of the loss or damage due 
to failure and the probability (or frequency) of failure resulting in such 
damage. Damage comprises any consequences or loss due to failure (see 
section 6.3.1). The probability of occurrence of a product failure depends 
on the way the software product is used. The software’s operational profile 
must be considered here. Therefore, detailed estimation of risks is diffi-
cult.9 Risk factors to be considered may arise from the project (project 
risks) as well as from the product to be delivered (product risks).

Project risksProject risks are risks that threaten the project’s capability to deliver 
the product:
■ Supplier-side risks such as, for example, the risk that a subcontractor 

fails to deliver or fighting about the contract. Project delays or even 
legal action may result from these risks.

■ An often-underestimated organizational risk is lack of necessary 
resources (total or partial lack of personnel with the necessary skills; 
recognizing necessary training but not implementing it), problems of 
human interaction (e.g., if testers or test results do not get adequate 
attention), or internal power struggles such as no or insufficient coop-
eration between different departments.

7. Where defects have been found before, more defects can usually be found! Defects are 
symptoms of further problems. For defect-prone areas, it is sensible to add extra tests in 
the following test cycles.

8. An analytical standard method for this is failure mode and effects analysis (FMEA).
9. A spreadsheet-based method for estimating risks or risk classes can be found at [URL: 

Schaefer].
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■ Technical problems are another project risk. Wrong, incomplete, fuzzy, 
or infeasible requirements may lead to project failure. If new technolo-
gies, tools, programming languages, or methods are applied without 
sufficient experience, the expected result—to get better results faster—
may easily turn into the opposite. Another technical project risk is that 
the quality of intermediate results is too low (design documents, pro-
gram code, or test cases) or that defects have not been detected and 
corrected. There are even risks for the test itself—for example, if the 
test environment is not ready or the test data is incomplete.

Product risks Product risks are risks resulting from problems with the delivered product:
■ The delivered product has inadequate functional or nonfunctional 

quality.  Or the quality of the data to be processed is poor (for example, 
because of faults in previous data migration or conversion). 

■ The product is not fit for its intended use and is thus unusable.
■ The use of the product causes harm to equipment or even endangers 

human life.

Risk management The [IEEE 730] and [IEEE 829] standards for quality assurance and test 
plans demand systematic risk management. This comprises the following 
actions:

■ Regularly identifying what can go wrong (risks)
■ Prioritizing identified risks
■ Implementing actions to mitigate or fight those risks

An important risk mitigation activity is testing; testing provides informa-
tion about existing problems and the success or failure of correction. Test-
ing decreases uncertainty about risks, helps to estimate risks, and identifies 
new risks.

Risk-based Testing Risk-based testing helps to minimize and fight product risks from the 
start of the project. Risk-based testing uses information about identified 
risks for planning, specification, preparation, and execution of the tests. 
All major elements of the test approach are determined based on risk:

■ The test techniques to be used
■ The extent of testing
■ The priority of test cases

Even other risk-minimizing measures, such as training for inexperienced 
software developers, are considered as supplements to measures for testing.
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Risk-based test prioritizationRisk based prioritization of the tests ensures that risky product parts 
are tested more intensively and earlier than parts with lower risk. Severe 
problems (causing much corrective work or serious delays) are found as 
early as possible. Opposed to this, distributing scarce test resources 
equally throughout all test objects does not make much sense because this 
approach will test critical and uncritical product parts with the same 
intensity. Critical parts are then not adequately tested and test resources 
are wasted on uncritical parts.

6.5 Managing The Test Work

Every cycle through the testing process (see section 2.2, figure 2-4) usually 
results in tasks for correction or ➞changes for the developers. When bugs 
are corrected or changes are implemented, a new version of the software 
comes into life, and it must be tested. In every test level, the test process is 
repeatedly executed.

Test manager tasksThe test manager has to initiate these test cycles, monitor their pro-
gress, and control the test work. Depending on the size of the project, a 
test level may be managed by its own test manager.

6.5.1 Test Cycle Planning

Section 6.2 described the initial test planning (test approach and general 
work flow). This should be developed early in a project and described in 
the test plan.

 Detailed planning 

per test cycle

This general plan must be detailed in a detailed plan for the concrete 
test cycle to be run next, and it must be adapted to the current project sit-
uation. The following points should be addressed:

■ State of development: The software available at the start of the test 
cycle may have less or different functionality than originally planned 
for. The test specification and test cases may need to be adapted.

■ Test results: Problems discovered in earlier test cycles might require 
changed test priorities. Fixed defects require additional confirmation 
tests (retests), and these must be planned. Additional tests may be nec-
essary because some problems may be difficult or impossible to repro-
duce or analyze.

■ Resources: The plan for the current test cycle must be consistent with 
the project plan. Attention must be given to personal disposition plan-
ning, holiday planning, availability of test environment, and special tools.
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Planning the test effort Using these preconditions, the test manager estimates effort and duration 
of the test work and plans in detail which test cases shall be executed by 
which tester, in which order, and at which points of time. The result of this 
detailed planning is the plan for the next test cycle or regression test cycle.

6.5.2 Test Cycle Monitoring

To measure and monitor the results of the ongoing tests, objective ➞test 
metrics should be used. They are defined in the test plan. Only metrics that 
are reliably, regularly, and simply measurable10 should be used. These 
approaches are possible:

Metrics for monitoring the 

test process

■ Fault- and failure-based metrics
Number of encountered faults and number of generated incident 
reports (per test object) in the particular release. This should also 
include the problem class and status, and, if possible, a relation to the 
size of the test object (lines of code), test duration, or other measures 
(see section 6.6).

■ Test-case-based metrics
Number of test cases in a certain state, like specified or planned, 
➞blocked (e.g., because of a fault not being eliminated), number of test 
cases run (passed or failed).

■ Test-object-based metrics
Coverage of code, dialogs, possible installation variants, platforms, etc.

■ Cost-based metrics
Test cost until now, cost of the next test cycle in relation to expected 
benefit (prevented failure cost or reduced project or product risk).

Test status report The test manager lists the current measurement results in the test reports. 
After each test cycle, a test status report should show the following infor-
mation about the status of the test activities:

■ Test object(s), test level, test cycle date from … to …
■ Test progress: tests planned/run/blocked
■ Incident status: new/open/corrected
■ Risks: new/changed/known
■ Outlook: planning of the next test cycle

10. This is the case when the applied test tools automatically provide such data.
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■ Assessment: (subjective) assessment of the maturity of the test object, 
the possibility for release, or the current confidence

A template for such a report can be found in [IEEE 829]. 
Test exit criteriaOn the one hand, the measured data serves as a means to determine 

the current situation and to answer the question, How far has the test pro-
gressed? On the other hand, the data serves as exit criterion and to answer 
the question, Can the test be finished and the product be released? The 
quality requirements to be met (the product’s criticality) and the available 
test resources (time, personnel, test tools) determine which criteria are 
appropriate for determining the end of the test. The test exit criteria for 
the current project are also documented in the test plan. It should be pos-
sible to decide about each test exit criterion based on the collected test 
metrics.

Example:
Test completion criteria for 
the VSR-System test

The test cases in the VSR project are divided into the following three priority 
levels:

Based on this prioritization, the test plan describes the following decision about 
the test-case-based completion criteria for the VSR-System test:

■ All test cases with priority 1 have been executed without failure.
■ At least 60% of the test cases with priority 2 have been executed.

 Product release If the defined test exit criteria are met, project management (using advice from 
the test manager) decides whether the corresponding test object should be 
released and delivered. For component and integration testing, “delivery” means 
passing the test object to the next test level. The system test precedes the release 
of the software for delivery to the customer. Finally, the customer’s acceptance 
test releases the system for operation in the real application environment.

Release does not mean “bug free.” The product will surely contain some 
undiscovered faults, as well as some known ones that were rated as “not prevent-
ing release” and that therefore were not corrected. The latter faults are recorded 
in the incident database (also called ➞defect database or ➞problem database) 
and may be corrected later, during software maintenance (see section 3.6.1).

Priority Meaning

1 Test case must be executed

2 Test case should be executed

3 Test case may be executed
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6.5.3 Test Cycle Control

React on deviations 

from the plan

If testing is delayed with respect to the project and test planning, the test 
manager must take suitable countermeasures. This is called test (cycle) 
control. These actions may relate to the test or any other development 
activity.

It may be necessary to request and deploy additional test resources 
(personnel, workstations, and tools) in order to compensate for the delay 
and catch up on the schedule in the remaining cycles.

If additional resources are not available, the test plan must be adapted. 
Test cases with low priority will be omitted. If test cases are planned in sev-
eral variants, a further option is to only run them in a single variant (for 
example, tests are performed on one operating system instead of several). 
Although these adjustments lead to omission of some interesting tests, the 
available resources can at least make it possible to execute the high-prior-
ity test cases.

Depending on the severity of the faults and problems found, test dura-
tion may be extended. This happens because additional test cycles become 
necessary, because the corrected software must be retested after each cor-
rection cycle (see section 3.7.4). This could mean that the product release 
must be postponed.

Changes to test plan must be 

communicated clearly

It is important that the test manager documents and communicates 
every change in the plan because the change in the test plan may increase 
the release risk (product risk). The test manager is responsible for com-
municating this risk openly and clearly to the people responsible for the 
project.

6.6 Incident Management11

To ensure reliable and fast elimination of failures detected by the various 
test levels, a well-functioning procedure for communicating and managing 
those incident reports is needed. Incident management starts during test 
execution or upon test cycle completion by evaluating the test log.

11. Incident management is called ➞defect management in the ISTQB advanced test 
manager syllabus



6.6 Incident Management 193
6.6.1 Test Log

Test log analysisAfter each test run, or at the latest upon completion of a test cycle, the test 
logs are evaluated. Real results are compared to the expected results. If the 
test was automated, the tool will normally do this comparison immedi-
ately. Each significant, unexpected event that occurred during testing 
could be an indication of a test object malfunctioning. Corresponding pas-
sages in the test log are analyzed. The testers ascertain whether a deviation 
from the predicted outcome really has occurred or whether an incorrectly 
designed test case, incorrect test automation, or incorrect test execution 
caused the deviation (testers, too, can make mistakes).

Documenting incidentsIf the test object caused the problem,12 a defect or incident report is 
created. This is done for every unexpected behavior or observed deviation 
from the expected results found in the test log. An observation may be a 
duplicate of an observation recorded earlier. In this case, it should be 
checked to see whether the second observation yields additional informa-
tion, which may make it possible to more easily search for the cause of the 
problem. Otherwise, to prevent duplication of an incident record, the 
same incident should not be recorded a second time.

Cause analysis is a developer 

task

However, the testers do not have to investigate the cause of a recorded 
incident. This (debugging) is the developers’ responsibility.

6.6.2 Incident Reporting

In general, a central database is established for each project, in which all 
incidents and failures discovered during testing (and possibly during oper-
ation) are registered and managed. All personnel involved in development 
as well as customers and users can report incidents.13 These reports can 
refer to problems in the tested (parts of) programs as well as to faults in 
specifications, user manuals, or other documents.

Incident reporting is also referred to as problem, anomaly, defect, or 
failure reporting. Not every incident or problem is due to a developer mis-
take. Incident reporting sounds less like an “accusation.” Incident reporting 
is not a one-way street because every developer can comment on reports—
for example, by requesting comments or clarification from a tester or by 

12. Creating an incident report may of course also be useful if the tester caused the prob-
lem; for example, if the problem calls for further analyses. In this case, the incident will 
be directed to the tester and not to the developers.

13. This discussion focuses on communication between testers and developers instead of 
users.
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rejecting an unjustified report. Should a developer correct a test object, the 
corrections will also be documented in the incident database. This enables 
the responsible tester to understand this correction’s implications in order 
to retest it in the following test cycle.

At any point in time, the incident database enables the test manager 
and the project manager to get an up-to-date and complete picture of the 
number and state of problems and about the progress of corrections. For 
this purpose, the database should offer appropriate possibilities for report-
ing and analysis.

Hint: 
Use an incident database

■ One of the first steps when introducing a systematic test process for a project 
should be implementing disciplined incident management. An efficient inci-
dent database, giving role-related access to all staff involved in the project, is 
essential.

Standardized reporting 

format

To allow for smooth communication and to enable statistical analysis of 
the incident reports, every report must follow a project-wide unique report 
template. The test manager should define this template and reporting 
structure in, for example, the test plan. 

In addition to the description of the problem, the incident report typ-
ically contains information identifying the tested software, test environ-
ment, name of the tester, and defect class and prioritization as well as other 
information that’s important for reproducing and localizing the fault. 
Table 6-1 shows an example of an incident report template.

A similar, slightly less complex structure can be found in [IEEE 829]. 
Or a report can include many additional attributes and more detail, as 
shown in [IEEE 1044].

If the incident database is used in acceptance testing or product sup-
port, additional customer data must be collected. The test manager has to 
develop a template or scheme suitable for the particular project.

Document all information 

relevant to reproduction and 

correction

In doing so, it is important to collect all information necessary for 
reproducing and localizing a potential fault as well as information 
enabling analysis of product quality and correction progress. 

Irrespective of the scheme agreed upon, the following rule must be 
observed: Each report must be written in such a way that the responsible 
developer can identify the problem with minimal effort and find its cause 
as fast as possible. Reproducing problems, localizing the cause of prob-
lems, and repairing faults are usually unplanned extra work for deve-
lopers. Thus, the tester has the task of “selling” the incident report to the 
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developers. In this situation, it is very tempting for developers to ignore or 
postpone analysis and repair of problems, which are unclearly described 
or difficult to understand.

6.6.3 Defect Classification

An important criterion for managing a reported problem is its severity, 
that is, how far product use is impaired. The degree of severity will cer-
tainly be different for 100 open defect reports concerning system crashes 

Attribute Meaning

Id
en

tif
ic

at
io

n

Id / Number Unique identifier/number for each report

Test object Identifier or name of the test object

Version Identification of the exact version of the test object

Platform Identification of the HW/SW platform or the test environment 
where the problem occurs

Reporting 
person

Identification of the reporting tester (possibly with test level)

Responsible de-
veloper

Name of the developer or the team responsible for the test 
object

Reporting date Date and possibly time when the problem was observed

C
la

ss
ifi

ca
tio

n

Status The current state (and complete history) of processing for the 
report (section 6.6.4)

Severity Classification of the severity of the problem (section 6.6.3)

Priority Classification of the priority of correction (section 6.6.3)

Requirement Pointer to the (customer-) requirements which are not fulfilled 
due to the problem

Problem source The project phase, where the defect was introduced 
(analysis, design, programming); useful for planning process 
improvement measures

P
ro

bl
em

 d
es

cr
ip

tio
n

Test case Description of the test case (name, number) or the steps 
necessary to reproduce the problem

Problem 
description

Description of the problem or failure that occurred; 
expected vs. actual observed results or behavior

Comments List of comments on the report from developers and other staff 
involved

Defect 
correction

Description of the changes made to correct the defect

References Reference to other related reports

Table 6–1
Incident report template
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in the database than it would be with layout errors in windows. Severity 
can be classified using the classes given in table 6-2.

The severity of a problem should be assigned from the point of view of the 
user or future user of the test object. The classifications in table 6-2, how-
ever, do not indicate how quickly a particular problem should be corrected. 
Priority associated with handling the problem (➞failure priority) is a dif-
ferent matter and should not be confused with severity! When determin-
ing the priority of corrections, additional requirements defined by product 
or project management (for example, correction complexity), as well as 
requirements about further test execution (blocked tests), must be taken 
into account. Therefore, the question of how quickly a fault should be 
corrected is answered by an additional attribute, fault priority (or rather, 
correction priority). Table 6-3 presents a possible classification.

Class Description

1 – FATAL System crash, possibly with loss of data. The test object can-
not be released in this form.

2 – VERY SERIOUS Essential malfunctioning; requirements not adhered to or 
incorrectly implemented; substantial impairment to many 
stakeholders. The test object can only be used with severe 
restrictions (difficult or expensive workaround).

3 – SERIOUS Functional deviation or restriction (“normal” failure); require-
ment incorrectly or only partially implemented; substantial 
impairment to some stakeholders. The test object can be used 
with restrictions.

4 – MODERATE Minor deviation; modest impairment to few stakeholders. 
System can be used without restrictions. 

5 – MILD Mild impairment to few stakeholders; system can be used with-
out restrictions. For example, spelling errors or wrong screen 
layout. 

Priority Description

1 – IMMEDIATE The user’s business or working process is blocked or the 
running tests cannot be continued. The problem requires 
immediate, or if necessary, provisional repair (➞“patch”).

2 – NEXT RELEASE The correction will be implemented in the next regular 
product release or with the delivery of the next (internal) test 
object version.

3 – ON OCCASION The correction will take place when the affected system parts 
are due for a revision anyway.

4 – OPEN Correction planning has not taken place yet.

Table 6–2
Failure severity

Table 6–3
Fault priority
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Incident analysis for 

controlling the test process

Analyzing the severity and priority of reported incidents allows the test 
manager to make statements about product robustness or deliverability. 
Apart from test status determination and clarification of questions relating 
to how many faults were found, how many of them are corrected, and how 
many are still to be corrected, trend analyses are important. This means 
making predictions based on the analysis of the trend of incoming incident 
reports over time. In this context, the most important question is whether 
the volume of product problems still increases or whether the situation 
seems to improve.

Incident analysis for 

improving the test process

Data from incident reports can also be used to improve the test pro-
cess; for example, a comparison of data from several test objects can dem-
onstrate which test objects show an especially small number of faults. This 
could mean a lack of tests or that the program has been implemented 
especially carefully.

6.6.4 Incident Status

Test management not only has a responsibility to make sure incidents are 
collected and documented properly but is additionally responsible (in 
cooperation with project management) for enabling and supporting rapid 
fault correction and delivery of improved versions of the test object. 

This necessitates continuous monitoring of the defect analysis and 
correction process. For this purpose the incident status is used. Every inci-
dent report (see table 6-1) passes a series of predefined states, covering all 
steps from original reporting to successful defect resolution. Table 6-4 
shows an example for an incident status scheme. Figure 6-2 demonstrates 
this procedure.

Only the tester may set the 

state to “Closed”

A crucial fact that is often ignored is that only the tester may set the 
state to “Closed” and not the developer! And this should happen only after 
the repeated test (retest) has proven that the problem described in the 
problem report does not occur anymore. Should new failures occur as side 
effects after bugs are fixed, these failures should be reported in new inci-
dent reports.
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Example of extended 
test exit criteria for the 

VSR-System test

The test exit criteria for the VSR-System test shall reflect not only test progress 
but also the accomplished product quality. Therefore, the test manager enhances 
the test exit criteria with fault-based metrics as follows:
■ All faults of severity “1 – FATAL” are “Closed.”
■ All faults of severity “2 – SEVERE” are “Closed.”
■ The number of “new” incident reports per test week is stable or falling.

Status 
(set by)

Description

New 
(Tester)

A new report was written. The person reporting has included a 
sensible description and classification.

Open 
(Test manager)

The test manager regularly checks the new reports on 
comprehensibility and complete description of all necessary 
attributes. If necessary, attributes will be adjusted to ensure 
a project-wide uniform assessment. Duplicates or obviously 
useless reports are adjusted or rejected.
The report is assigned to a responsible developer and its status is 
set to “Open.”

Rejected 
(Test manager)

Duplicated or clearly wrong or unjustified incidents are rejected (no 
fault in the test object, request for change not taken into account).

Analysis 
(Developer)

As soon as the responsible developer starts processing this report, 
the status is set to “Analysis.” The result of the analysis 
(cause, possible remedies, estimated correction effort, etc.) 
will be documented in comments.

Observation 
(Developer)

The incident described can neither be reconstructed nor 
be eliminated. The report remains outstanding until further 
information/insights are available.

Correction 
(Project 
manager)

Based on the analysis, the project manager decides if correction 
should take place and therefore sets the status to “Correction.”
The responsible developer performs the corrections and docu-
ments the kind of corrections done using comments.

Test
(Developer)

As soon as the responsible developer has corrected the problem 
from his point of view, the report is set to “Test” status. 
The new software version containing this correction is identified.

Closed
(Tester)

Reports carrying the status “Test” are verified in the next test cycle. 
For this purpose, at least the test cases, which discovered the 
problem, are repeated.
Should the test confirm that the repair was successful, the tester 
finishes the report-history by setting the final status “Closed.”

Failed
(Tester)

Should the repeated test show that the attempt to repair was 
unsuccessful or insufficient, the status is set to “Failed” and a 
repeated analysis becomes necessary.

Table 6–4
Incident status scheme
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The scheme described previously can be applied to many projects. How-
ever, the model must be tailored to cover existing or necessary decision 
processes in the project. In the basic model, all decisions lie with one single 
person. In larger-scale projects, groups make the decisions. The decision 
processes grow more complex because representatives of many stake-
holders must be heard. 

Change control boardIn many cases, changes to be done by the developers are not really 
fault corrections, but real (functional) enhancements. Because the distinc-
tion between “incident report” and “enhancement request” and the rating 
as “justified” or “not justified” is often a matter of opinion, an institution 
accepting or rejecting incident reports and ➞change requests is needed. 

Open

Analysis

New

Test

Observation

Failed

Correction

Rejected

Closed

Figure 6–2
Incident status model
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This institution, called the change control board, usually consists of repre-
sentatives from the following stakeholders: product management, project 
management, test management, and the customer.

6.7 Requirements to Configuration Management

A software system consists of a multitude of individual components that 
must fit together to ensure the functionality of the system as a whole. In 
the course of the system’s development, new, corrected, or improved ver-
sions or variants of each of these components evolve. Because several 
developers and testers take part in this process simultaneously, it is far 
from easy to keep track of the currently valid components and their rela-
tionships. 

Typical symptoms of 

insufficient configuration 

management

If configuration management is not done properly in a project, the fol-
lowing typical symptoms may be observed:

■ Developers mutually overwrite each other’s modifications in the source 
code or other documents because simultaneous access to shared files is 
not avoided.

■ Integration activities are impeded:
• Because it is unclear which code versions of a specific component 

exist in the development team and which ones are the current ver-
sions

• Because it is unclear which versions of several components belong 
together and can be integrated to a larger subsystem

• Because different versions of compilers and other development tools 
are used

■ Problem analysis, fault correction, and regression tests are complicated:
• Because it is unknown where and why a component’s code was 

changed with respect to a previous version
• Because it is unknown from which code files a particular integrated 

subsystem (object code) originates
■ Tests and ➞test evaluation are impeded:

• Because it is unclear which test cases belong to which version of a 
test object

• Because it is unclear which test cycle of which version of the test ob-
ject gave which test results
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Testing depends on 

configuration management

Insufficient configuration management thus leads to a number of possible 
problems disturbing the development and test process. If, for example, it is 
unclear during a test level whether the examined test objects are the latest 
version, the tests rapidly lose any significance. A test process cannot be 
properly executed without reliable configuration management.

Requirements to 

configuration management

From the perspective of the test, the following requirements should be 
met:

■ Version management
This is the cataloguing, filing, and retrieval of different versions of a 
➞configuration item (for example, version 1.0 and 1.1 of a component 
consisting of several files). This also includes securing comments on 
the reason for the particular change.

■ Configuration identification
This is the identification and management of all files (configuration 
objects) in the particular version, which together comprise a subsys-
tem (configuration). The prerequisite for this is version management.

■ Incident and change status control
This is the documenting of incident reports and change requests and 
the possibility to reconstruct their application on the configuration 
objects.

■ Configuration audits
To check the effectiveness of configuration management, it is useful to 
organize configuration audits. Such an ➞audit offers the possibility to 
check whether the configuration management documented all soft-
ware components, whether configurations can be correctly identified, 
etc.

Example of configuration 
management in the VSR 
project

The software developed in the VSR project is available in different languages (for 
example, English, German, and French) and must be compatible with several 
hardware and software platforms. Several components must be compatible with 
particular external software versions (e.g., the mainframe’s current communica-
tion software). Furthermore, data from miscellaneous sources must be imported 
at regular intervals (e.g., product catalogues, price lists, and contract data) with 
changing content and format during the system’s life cycle. The VSR configura-
tion management must ensure that development and testing always have consist-
ent, valid product configurations. Similar requirements exist during system oper-
ation at the customer.
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To implement configuration management conforming to the requirements 
mentioned earlier, differing processes and tools should be chosen depend-
ing on project characteristics. A configuration management plan must 
therefore determine a process tailored to the project situation. A standard 
for configuration management and respective plans can be found in 
[IEEE 828].

6.8 Relevant Standards

Today, a multitude of standards exist, setting constraints and defining the 
“state-of-the-art” even for software development. This is especially true for 
the area of software quality management and software testing, as the stand-
ards quoted in this book prove. One of the tasks for a quality manager or 
test manager is defining, in this context, which standards, rules, or possible 
legal directives are relevant for the product to be tested (product stand-
ards) or for the project (project standards) and to ensure that they are 
adhered to. Here are some possible sources of standards:

■ Company standards
These are company internal directives, procedure, and guidelines 
(for the supplier, but also possibly set by the customer), such as a qual-
ity management handbook, a test plan template, or programming 
guidelines.

■ Best practices
These are not standardized, but professionally accepted methods and 
procedures representing the state of the art in a particular field of 
application.

■ Quality management standards
These are standards spanning several industrial sectors, specifying 
minimal process requirements yet not stating specific requirements for 
process implementation. A well-known example is [ISO 9000], which 
requires appropriate (intermediate) tests during the production pro-
cess (also in the special case of the software development process) 
without indicating when and how these tests are to be performed.

■ Standards for particular industrial sectors
These are standards defining for a particular product category or appli-
cation field the minimum extent to which tests must be performed or 
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documented. An example is standard [RTCA-DO 178] for airborne 
software products; another example is [EN 50128] for railway signaling 
applications.

■ Software testing standards
These are process or documentation standards, defining independently 
of the product how software tests should be performed; for example, 
the standards [BS 7925-2], [IEEE 829], [IEEE 1028], [ISO 29119]. 

The important and relevant standards for software testing are covered in 
this book. The test plan according to [IEEE 829-1998] and [IEEE 829-2008] 
is described in detail in appendix A. Following such standards makes sense, 
even when compliance is not mandatory. At least when encountering legal 
disputes, demonstrating that development has been done according to the 
“state of best industry practice” is helpful. This also includes compliance 
to standards.

6.9 Summary

■ Development activities and testing activities should be independently 
organized. The clearer this separation, the more effective the testing.

■ Depending on the task to be executed within the test process, people 
with role-specific testing skills are needed. In addition to professional 
skills, social competence is required.

■ The test manager’s tasks comprise the initial strategy and planning of 
the tests as well as further planning, monitoring, and controlling of the 
different test cycles.

■ In the test plan, the test manager describes and explains the test strat-
egy (test objectives, test approach, tools, etc.). The international stand-
ard [IEEE 829] provides a checklist for format and content.

■ Faults and deficiencies that are not found by the testing and thus 
remain in the product can lead to very high costs. The test strategy has 
to balance testing costs, available resources, and possible defect costs.

■ It is important to quickly decide which tests can be left out if lack of test 
resources occurs. To achieve this, the tests should be prioritized.

■ Risk is one of the best criteria for prioritizing. Risk-based testing uses 
information about identified risks for planning and controlling all 
steps in the test process. All major elements of the test strategy are 
determined based on risk.
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■ Measurable test exit criteria objectively define when testing can be 
stopped. Without given test exit criteria, testing might stop randomly.

■ Incident management and configuration management, together, form 
the basis for an efficient test process.

■ Problem reports must be collected in a project-wide standardized way 
and followed up through all stages of the incident analysis and fault 
resolution process.

■ Standards contain specifications and recommendations for profes-
sional software testing. Following such standards makes sense, even 
when compliance is not mandatory.
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7 Test Tools

This chapter gives an overview of the different test tools. Topics include how 
to choose and introduce these tools and the preconditions for using them.

Due to the fast development of new testing tools, this chapter will undergo 
a major revision in the ISTQB syllabus version 2015. A reader preparing 
for an exam based on the new syllabus is advised to study the ISTQB 
syllabus in addition to this chapter.

7.1 Types of Test Tools
Why tools?Test tools are normally used for these purposes:

■ Improving test efficiency. Manual work, such as repetitive and time-
consuming tasks, can be automated. Static analysis and test execution 
are examples of tasks that can be automated.

■ Enabling tests. Tools may make it possible to execute tests that are 
impossible to do manually. This includes performance and load tests 
and tests of real-time inputs for control systems.

■ Improving test reliability. Reliability is improved by automating man-
ual tasks like comparing large amounts of data or simulating program 
behavior.

There are tools that accomplish one single task as well as tools that have 
several purposes. Tools for separate test execution, test execution automa-
tion, and generating or migrating test data belong to the first group. When 
tools have several capabilities, they are often called tool suites. Such a suite 
may, for example, automate test execution, logging, and evaluation.
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Test framework Test framework is a term often used in discussions of test tools. In practice, 
it has at least three meanings:

■ Reusable and extensible testing libraries that can be used to build test-
ing tools (sometimes called test harnesses)

■ The way of designing the test automation (e.g., data-driven, keyword-
driven)

■ The whole process of test execution

For the purpose of the ISTQB Foundation Level syllabus, the terms test 
framework and test harness are used interchangeably and are defined by the 
first two meanings.

CAST tools Test tools are often called CAST tools (Computer Aided Software 
Testing), which is derived from the term CASE tools (Computer Aided 
Software Engineering).

Depending on which activities or phases in the test process (see sec-
tion 2.2) are supported, several tool types1 or classes may be distinguished. 
In most cases, special tools are available within a tool class for special plat-
forms or application areas (e.g., performance testing tools for the testing of 
web applications).

Only in very few cases is the whole range of testing tools used in a 
project. However, the available tool types should be known. The tester 
should be able to decide if and when a tool may be used productively in a 
project.

Tool list on the Internet A list of available test tools with suppliers can be found at [URL: Tool-
List]. The following sections describe which functions the tools in the dif-
ferent classes provide.

7.1.1 Tools for Management and Control of Testing and Tests

Test management Test management tools provide mechanisms for easy documentation, pri-
oritization, listing, and maintenance of test cases. They allow the tester to 
document and evaluate if, when, and how often a test case has been exe-
cuted. They also facilitate the documentation of the results (“OK,” “not 
OK”). In addition, some tools support project management within testing 
(e.g., timing and use of resources). They help the test manager plan the 
tests and keep an overview of hundreds or thousands of test cases.

1. Commercial tools often support several activities or phases and may be assigned to 
several tool classes.
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Advanced test management tools support requirements-based testing. 
In order to do this, they capture system requirements (or import them 
from requirements management tools) and link them to the tests, which 
test the corresponding requirements. Different consistency checks may be 
done; for example, a test may check to see if there is at least one planned 
test case for every requirement.

Figure 7-1 shows what this may look like for the CarConfigurator. 

The requirement Configure car has four assigned test cases: iTB-TC-67-PC-187, 
iTB-TC-27-PC-79, iTB-TC-27-PC-80 and iTB-TC-27-PC-81. iTB-TC-27-PC-79 
found a failure and is connected to the corresponding incident report, CC-001. 
Test case iTB-TC-27-PC-79 is not yet approved. Thus, the tool marks the require-
ment Configure car as being only “partially tested,” using a corresponding icon in 
the requirements tree. 

Requirements managementTools for requirements management store and manage information about 
requirements. They allow testers to prioritize requirements and to follow 
their implementation status.

In a narrow sense, they are not testing tools, but they are very useful 
for defining a test based on requirements (see section 3.7.1) and for plan-
ning the test; for example, the test could be oriented on the implementa-
tion status of a requirement. For this purpose, requirements management 
tools are usually able to exchange information with test management tools. 
Thus, it is possible to seamlessly interconnect requirements, tests, and test 

Figure 7–1
Requirements-based test 
planning using TestBench 
[URL: TestBench] 
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results. For every requirement the corresponding tests can be found and 
vice versa. The tools also help to find inconsistencies or holes in the 
requirements, and they can identify requirements without test cases; that 
is, requirements that otherwise might go untested.

Incident management A tool for incident, problem, or failure management is nearly indis-
pensable for a test manager. As described in section 6.6, incident manage-
ment tools are used to document, manage, distribute, and statistically 
evaluate incident and failure messages. Better tools of this class support 
problem status models capable of being individually tailored. The whole 
work process may be defined, from the incident discovery through correc-
tion until the regression test has been executed. Every project member will 
be guided through the process corresponding to his role in the team.

Configuration management Configuration management tools (see section 6.7) are, strictly speak-
ing, not testing tools. They make it possible to keep track of different ver-
sions and builds of the software to be tested as well as documentation and 
testware. It is thus easier to trace which test results belong to a test run for 
a certain test object of a certain version.

Tool integration Integrating test tools with test tools and with other tools is getting 
more and more important. The test management tool is the key for this:

■ Requirements are imported from the requirements management tool 
and used for test planning. The test status for every requirement can be 
watched and traced in the requirements management tool or the test 
management tool.

■ From the test management tool, test execution tools (for example, 
➞ test robots) are started and supplied with test scripts. The test results 
are automatically sent back and archived.

■ The test management tool is coupled with the incident management 
tool. Thus, a plan for retest can be generated; that is, a list of all test 
cases necessary to verify which defects have been successfully cor-
rected in the latest test object version.

■ Finally, through configuration management, every code change is con-
nected to the triggering incident or the change request causing it.

Such a tool chain makes it possible to completely trace the test status from 
the requirements through the test cases and test results to the incident 
reports and code changes.

Generation of test reports 

and test documents

Both test management and incident management tools include exten-
sive analysis and reporting features, including the possibility to generate 
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the complete test documentation (test plan, test specification, test sum-
mary report) from the data maintained by the tool. 

Usually, the format and contents of such documents can be individu-
ally adjusted. Thus the generated test documents will be easy to seamlessly 
integrate into the existing documentation workflow.

The collected data can be evaluated quantitatively in many ways. For 
example, it is very easy to determine how many test cases have been run 
and how many of them were successful or how often the tests have found 
failures or faults of a certain category. Such information helps to assess the 
progress of the testing and to manage the test process.

7.1.2 Tools for Test Specification

In order to make test cases reproducible, the pre- and postconditions as 
well as test input data and expected results need to be specified.

Test data generatorsSo-called test (data) generators can support the test designer in gener-
ating test data. According to [Fewster 99], several approaches can be dis-
tinguished, depending on the test basis used for deriving the test data:

■ Database-based test data generators process database schemas and 
are able to produce test databases from these schemas. Alternatively, 
they perform dedicated filtering of database contents and thus produce 
test data. A similar process is the generation of test data from files in 
different data formats.

■ Code-based test data generators produce test data by analyzing the 
test object’s source code. A drawback and limitation is that no expected 
results can be generated (a test oracle is needed for this) and that only 
existing code can be covered (as with all white box methods). Faults 
caused by missing program instructions (missing code) remain unde-
tected. The use of code as a test basis for testing the code itself is in gen-
eral a very poor foundation. However, this approach may be used to 
generate a regression or platform test of an existing and reliable system, 
where the test result is collected for the existing system and platform 
and the generated test is then re-executed on other platforms or new 
versions.

■ Interface-based test data generators analyze the test object’s interface 
and identify the interface parameter domains and use. For example, 
equivalence class partitioning and boundary value analysis can be used 
to derive test data from these domains. Tools are available for analyzing 
different kinds of interfaces, ranging from application programming 
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interfaces (APIs) to graphical user interfaces (GUIs). The tool is able to 
identify which data fields are contained in a screen (e.g., numeric field, 
date) and generate test data covering the respective value ranges (e.g., 
by applying boundary value analysis). Here, too, the problem is that no 
expected results can be generated. However, the tools are very well 
suited for automatic generation of negative tests because specific target 
values are of no importance here; what is important is whether the test 
object produces an error message or not.

■ Specification-based test data generators use a specification to derive 
test data and corresponding expected results. A precondition is that the 
specification is available in a formal notation. For example, a UML 
message sequence chart may describe a method-calling sequence. This 
approach is called model-based testing (MBT). The UML model is 
designed using a CASE tool and is then imported to the test generator. 
The test generator generates test scripts, which are then passed on to a 
suitable test execution tool. 

Test designer’s creativity 

cannot be replaced

Test tools cannot work miracles. Specifying tests is a very challenging task, 
requiring not only a comprehensive understanding of the test object but 
also creativity and intuition. A test data generator can apply certain rules 
(e.g., boundary value analysis) for systematic test generation. However, it 
cannot judge whether the generated test cases are suitable, important, or 
irrelevant. The test designer must still perform this creative analytical task. 
The corresponding expected result must be determined and added 
manually too.

7.1.3 Tools for Static Testing

Static analysis can be executed on source code or on specifications before 
there are executable programs. Tools for static testing can therefore be 
helpful to find faults in early phases of the development cycle (i.e., the left 
branch of the generic V-model in figure 3-1). Faults can be detected and 
fixed soon after being introduced and thus dynamic testing will be less rid-
dled with problems, which decreases costs and development time.

Tools for review support Reviews are structured manual examinations using the principle that 
four eyes find more defects than two (see section 4.1.2). Review support 
tools help to plan, execute, and evaluate reviews. They store information 
about planned and executed review meetings, meeting participants, and 
findings and their resolution and results. Even review aids like checklists 
can be provided online and maintained. The collected data from many 
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reviews may be evaluated and compared. This helps to better estimate 
review resources and to plan reviews but also to uncover typical weak-
nesses in the development process and specifically prevent them.

Tools for review support are especially useful when large, geographi-
cally distributed projects use several teams. Online reviews can be useful 
here and even may be the only possibility.

Static analysisStatic analyzers provide measures of miscellaneous characteristics of 
the program code, such as the cyclomatic number and other code metrics 
(see section 4.2). Such data are useful for identifying complex areas in the 
code, which tend to be defect prone and risky and should thus be 
reviewed. These tools can also check that safety- and security-related cod-
ing requirements have been followed. Finally, they can identify portability 
issues in the code.

Additionally, static analyzers can be used to find inconsistencies and 
defects in the source code. These are, for example, data flow and control 
flow anomalies, violation of programming standards, and broken or inva-
lid links in website code.

Analyzers list all “suspicious” areas, whether there are really problems 
or not, causing the output lists to grow very long. Therefore, most tools are 
configurable; that is, it is possible to control the breadth and depth of anal-
ysis. When analyzing for the first time, the tools should be set to be less 
thorough. A more thorough analysis may be done later. In order to make 
such tools acceptable for developers, it is essential to configure them 
according to project-specific needs.

Model checkerSource code is not the only thing that may be analyzed for certain 
characteristics. Even a specification can be analyzed if it is written in a for-
mal notation or if it is a formal model. The corresponding analysis tools 
are called model checkers. They “read” the model structure and check dif-
ferent static characteristics of these models. During checking, they may 
find problems such as missing states, state transitions, and other inconsist-
encies in a model. The specification-based test generators discussed in 
section 7.1.2 are often extensions of static model checkers. Such tools are 
very interesting for developers if they generate test cases.

7.1.4 Tools for Dynamic Testing
Tools reduce mechanical 

test work

When talking about test tools in general, we often mean tools for automatic 
execution of dynamic tests. They reduce the mechanical work involved in 
test execution. Such tools send input data to the test object, record its reac-
tion, and document test execution. In most cases the tools run on the same 
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hardware as the test object. However, this influences the test object because 
the test tool uses memory and machine resources. The test object may thus 
react differently. This is called the tool effect. This must be remembered 
when evaluating the test. These tools must be coupled to the test interface 
of the test object. They are therefore quite different, depending on the test 
level in which they are used.

Debuggers Debuggers make it possible to execute a program or part of a program 
line by line. They also support stopping the program at every statement to 
set and read variables. Debuggers are mainly analysis tools for the devel-
opers, used to reproduce failures and analyze their causes. But even during 
testing, debuggers can be useful to force certain test situations, which nor-
mally requires a lot of work. Debuggers can also be used as a test interface 
at the component level.

Test drivers and test 

frameworks

Products or tailor-made tools that interact with the test object through 
its programming interface are called test drivers or test frameworks. This 
is especially important for test objects without a user interface, that is, 
impossible to test manually. Test drivers are mainly necessary in compo-
nent and integration testing and for special tasks in system testing. 
Generic test drivers or test harness generators are also available. These 
analyze the programming interface of the test object and generate a test 
frame. Test framework generators are thus made for specific programming 
languages and development environments. The generated test frame con-
tains the necessary initializations and call sequences to control the test 
object. Even dummies or stubs may be generated. Additionally, functions 
are provided to capture test execution and expected and actual results. Test 
frame (generators) considerably reduce the work necessary for program-
ming the test environment. Different generic test frameworks are freely 
available on the Internet [URL: xunit].

Simulators If performing a system test in its operational environment or using the 
final system is not possible or demands a disproportionately great effort
(e.g., airplane control robustness test in the airplane itself), simulators can
be used. A simulator simulates the actual application environment as com-
prehensively and realistically as possible.

Test robots Should the user interface of a software system directly serve as the test 
interface, so-called test robots can be used. These tools have traditionally 
been called ➞capture/replay tools or ➞capture/playback tools, which almost 
completely explains their way of functioning. A test robot works somewhat 
like a video recorder: The tool logs all manual tester inputs (keyboard 
inputs and mouse clicks). These inputs are then saved as a test script. The 
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tester can repeat the test script automatically by “playing it back.” This prin-
ciple sounds very tempting and easy, but in practice, there are traps.

Excursion: On the 
functioning of capture/
playback tools
Capture

In capture mode, the capture/playback tool logs keyboard input and mouse clicks. 
The tool not only records the x-/y-coordinates of the mouse clicks but also the events 
(e.g., pressButton (“Start”)) triggered in the graphical user interface (GUI) as well as 
the object’s attributes (object name, color, text, x/y position, etc.) necessary to recog-
nize the selected object.

Result comparisonsTo determine if the program under test is performing correctly, the tester can 
include checkpoints, that is, comparisons between expected and actual results 
(either during test recording or during script editing).

Thus, layout properties of user interface controls (e.g., color, position, and button 
size) can be verified as well as functional properties of the test object (value of a 
screen field, contents of a message box, output values and texts, etc.).

ReplayThe captured test scripts can be replayed and therefore, in principle, be repeated 
as often as desired. Should a discrepancy in values occur at a checkpoint, “the test 
fails.” The test robot then writes an appropriate notice in the test log. Because of their 
capability to perform automated comparisons of actual and expected values, test 
robot tools are extraordinarily well suited for regression test automation.

Problem: GUI changesHowever, one problem exists: If, in the course of program correction or program 
extension, the test object’s GUI is changed between two test runs, the original script 
may not “suit” the new GUI layout. The script, no longer being synchronized to the 
application, may stop and abort the automated test run. Test robot tools offer a certain 
robustness against such GUI layout changes because they recognize the object itself 
and its properties, instead of just x/y positions on the screen. This is why, for example, 
during replay of the test script, buttons will be recognized again, even if their position 
has moved.

Test programmingTest scripts are usually written in scripting languages. These scripting languages 
are similar to common programming languages (BASIC, C, and Java) and offer their 
well-known general language properties (decisions, loops, procedure calls, etc.). 
With these properties it is possible to implement even complex test runs or to edit and 
enhance captured scripts. In practice, this editing of captured scripts is nearly always 
necessary because capturing usually does not deliver scripts capable for regression 
testing. The following example illustrates this.

Example: 
Automated test of VSR-
ContractBase

The tester will test the VSR subsystem for contract management by examining 
whether sales contracts are properly filed and retrieved. For test automation pur-
poses, the tester may record the following interaction sequence:

Call screen "contract data';
Enter data for customer "Miller";
Set checkpoint;
Store "Miller" contract in contract database;
Clear screen "contract data";
Read "Miller" contract from contract database;
Compare checkpoint with screen contents;
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A successful check indicates that the contract read from the database corresponds 
to the contract previously filed, which leads to the conclusion that the system cor-
rectly files contracts. But, when replaying this script, the tester is surprised to find 
that the script has stopped unexpectedly. What happened?

Problem: 
Regression test capability

When the script is played a second time, upon trying to store the “Miller” 
contract, the test object reacts in a different way than during the first run. The 
“Miller” contract already exists in the contract database, and the test object ends 
the attempt to file the contract for the second time by reporting as follows:

"Contract already exists.
Overwrite the contract Y/N?"

The test object now expects keyboard input. Because keyboard input is missing in 
the captured test script, the automated test stops.

The two test runs have different preconditions. Because the captured script 
relies on a certain precondition (“Miller” contract not in the database), the test 
case is not good enough for regression test. This problem can be corrected by 
programming a case decision or by deleting the contract from the database as the 
final “cleanup action” of the test case.

As seen in the example, it is crucial to edit the scripts by programming. 
Thus, implementing such test automation requires programming skills. 
When comprehensive and long-lived automation is required, a well-
founded test architecture must be chosen; that is, the test scripts must be 
modularized.

Excursion: 
Test automation 

architectures

A good structure for the test scripts helps to minimize the cost for creating and main-
taining automated tests. A good structure also supports dividing the work between 
test automators (knowing the test tool) and testers (knowing the application/business 
domain).

Data-driven testing Often, a test procedure (test script) shall be repeated many times with different 
data. In the previous example, not only the contract of Mr. Miller should be stored and 
managed, but the contracts of many other customers as well.

An obvious step to structure the test script and minimize the effort is to separate 
test data and test procedure. Usually the test data are exported into a table or spread-
sheet file. Naturally, expected results must also be stored. The test script reads a test 
data line, executes the ➞test procedure with these test data, and repeats this process 
with the next test data line. If additional test data are necessary, they are just added 
to the test data table without changing the script. Even testers without programming 
skills can extend these tests and maintain them to a certain degree. This approach is 
called data-driven testing.

Command- or keyword-
driven testing

In extensive test automation projects, an extra requirement is reusing certain test 
procedures. For example, if contract handling should be tested, not only for buying 
new cars but also for buying used cars, it would be useful to run the script from the 
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previous example without changes for both areas. Thus, the test steps are encapsu-
lated in a procedure named, for example, check_contract (customer). The procedure 
can then be called via its name and reused in other tests without changes.

With correct granularity and correspondingly well-chosen test procedure names, 
it is possible to achieve a situation where every execution sequence available for the 
system user is mapped to such a procedure or command. So that the procedures can 
be used without programmer know-how, an architecture is implemented to make the 
procedures callable through spreadsheet tables. The (business) tester will then (anal-
ogous to the data-driven test) work only with tables of commands or keywords and 
test data. Specialized test automation programmers have to implement the com-
mands. This approach is called command-, keyword-, or action-word-driven testing.

The spreadsheet-based approach is only partly scalable. With large lists of key-
words and complex test runs, the tables become incomprehensible. Dependencies 
between commands, and between commands and their parameters, are very difficult 
to trace. The effort to maintain the tables grows disproportionately as the tables grow.

Interaction-driven testsThe newest generation of test tools (for an example, see [URL: TestBench]) 
implement an object-oriented management of test modules using a database. You 
can retrieve test modules (so-called interactions) from the database by dragging and 
dropping them into new test sequences. The necessary test data (even complex data 
structures) are automatically included. If any module is changed, every area using 
this module is easy to find and can be selected. This considerably reduces the test 
maintenance effort. Even very large repositories can be used efficiently and without 
losing overview.

Comparators➞Comparators (a further tool class) are used to identify differences 
between expected and actual results. Comparators typically function with 
standard file and database formats, detecting differences between data files 
containing expected and actual data. Test robots usually include integrated 
comparator functions operating with terminal contents, GUI objects, or 
screen content copies. These tools usually offer filtering mechanisms that 
skip data or data fields that are irrelevant to the comparison. For example, 
this is necessary when date/time information is contained in the test 
object’s file or screen output. Because this information differs from test run 
to test run, the comparator would wrongly interpret this change as a dif-
ference between expected and actual outcome.

Dynamic analysisDuring test execution, tools for dynamic analysis acquire additional 
information on the internal state of the software being tested. This may be, 
for instance, information on allocation, usage, and release of memory. 
Thus, memory leaks, wrong pointer allocation, or pointer arithmetic 
problems can be detected.

Coverage analysisCoverage analyzers provide structural test coverage values that are 
measured during test execution (see section 5.2). For this purpose, prior to 
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execution, an instrumentation component of the tool inserts measure-
ment code into the test object (instrumentation). If such measurement 
code is executed during a test run, the corresponding program fragment is 
logged as “covered.” After test execution, the coverage log is analyzed and 
a coverage statistic is created. Most tools provide simple coverage metrics, 
such as statement coverage and branch coverage (see sections 5.2.1 and 
5.2.2). When interpreting measurement results, it is important to bear in 
mind that different coverage tools may give different coverage results and 
that some coverage metrics may be defined differently depending on the 
actual tool.

7.1.5 Tools for Nonfunctional Test

Load and performance test There is tool support for nonfunctional tests, especially for load and per-
formance tests. Load test tools generate a synthetic load (i.e., parallel data-
base queries, user transactions, or network traffic). They are used for exe-
cuting volume, stress, or performance tests. Tools for performance tests 
measure and log the response time behavior of the system being tested 
depending on the load input. Depending on how the measurement is per-
formed and on the tools being used, the time behavior of the test object 
may vary (probe effect or tool effect). This must be remembered when 
interpreting the measurement results. In order to successfully use such 
tools and evaluate the test results, experience with performance tests is 
crucial. The necessary measurement elements are called monitors.

Monitors Load or performance tests are necessary when a software system has 
to execute a large number of parallel requests or transactions within a cer-
tain maximum response time. Real-time systems and, normally, client/
server systems as well as web-based applications must fulfill such require-
ments. Performance tests can measure the increase in response time cor-
related to increasing load (for example, increasing number of users) as 
well as the system’s maximum capacity when the increased load leads to 
unacceptable latency due to overload. Used as an analysis resource, perfor-
mance test tools generally supply the tester with extensive charts, reports, 
and diagrams representing the system’s response time and transaction 
behavior relative to the load applied as well as information on perfor-
mance bottlenecks. Should the performance test indicate that overload 
already occurs under everyday load conditions, the system must be tuned 
(for example, by hardware extension or optimization of performance-
critical software components).
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Testing of securityTools for testing access control and data security try to detect security 
vulnerabilities. Exploiting these, unauthorized persons may possibly get 
access to the system.  Virus scanners and firewalls can also be seen as part 
of this tool category, mainly because the protocols generated by such tools 
deliver evidence of security deficiencies.

Data Quality AssessmentIn system testing, especially in data conversion or migration projects, 
tools may be used to check the data. Before and after conversion or migra-
tion, the data must be checked to make sure they are correct and complete 
or conform to certain syntactical or semantic rules.

Example: 
Data quality in 
the VSR-System

Various aspects of data quality are relevant to the VSR-System:

■ The DreamCar subsystem includes various car model and accessory variants. 
Even if the software works correctly, the user may experience problems if their 
data concerning specific cars or accessories is incorrect or missing. In this case, 
the user cannot successfully create a configuration or, worse still, is able to 
create a configuration that is impossible to produce. The customer happily ex-
pects his new car and later learns that it cannot be delivered. Such situations gu-
arantee customer disappointment.

■ NoRisk helps the sales office calculate matching insurance costs for any car. If 
some of the data is obsolete, the cost of insurance will be wrongly priced. This 
is a risk, especially if the resulting quote is too expensive, which would encou-
rage customers to seek an alternative insurance provider. The customer could 
decide not to sign an insurance contract at the car dealer and instead look for 
insurance at home through the Internet.

■ ContractBase is used to document complete customer histories, including con-
tracts, repairs, and so on. The prices can be shown in euros, even if they were 
actually transacted in an older European currency. When older currencies were 
converted to euros, were the data correctly converted or has the customer really 
paid the shown amount? 

■ During advertising campaigns, the car dealer regularly sends out special offers 
and invites existing customers to attend new product presentations. The system 
contains all necessary address data as well as further data, such as, for example, 
the age of the customer’s current car. However, the special advertising will get 
to the right customer with the right information only if the data are complete 
and consistent. Does the VSR-System prevent such problems at input time? For 
example, does the zip code match the actual town or road? Does the system as-
sure that all fields relevant for marketing are filled in (for example, the age of 
the used car and not the contract date for its purchase)?

These examples illustrate that data accuracy is largely the responsibility of 
the customer or system user. But the system supplier can support “good” 
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data quality. Conversion programs need to be bug free and traceable. There 
should be reasonable checks of input data for consistency and plausibility 
and many other similar measures.

7.2 Selection and Introduction of Test Tools

Some elementary tools (e.g., comparators, coverage analyzers) are included 
in typical operating system environments (e.g., UNIX) as a standard fea-
ture. In these cases, the tester can assemble the necessary tool support 
using simple, available means. Naturally, the capabilities of such standard 
tools are limited, so it is sometimes useful to buy more advanced commer-
cial test tools.

As described earlier, special tools are commercially available for every 
phase in the test process, supporting the tester in executing the phase-spe-
cific tasks or performing these tasks themselves. The tools range from test 
planning and test specification tools, supporting the tester in his creative 
test development process, to test drivers and test robots able to automate 
the mechanical test execution tasks.

When contemplating the acquisition of test tools, automation tools for 
test execution should not be the first and only choice.

“Automating … faster 

chaos”

The area in which tool support may be advantageous strongly depends 
on the respective project environment and the maturity level of the devel-
opment and test process. Test execution automation is not a very good 
idea in a chaotic project environment, where “programming on the fly” is 
common practice, documentation does not exist or is inconsistent, and 
tests are performed in an unstructured way (if at all). A tool can never 
replace a nonexistent process or compensate for a sloppy procedure. “It is 
far better to improve the effectiveness of testing first than to improve the 
efficiency of poor testing. Automating chaos just gives faster chaos” 
[Fewster 99, p. 11].

In those situations, manual testing must first be organized. This 
means, initially, that a systematic test process must be defined, introduced, 
and adhered to. Next, thought can be given to the question, Which process 
steps can be supported by tools? What can be done to enhance the produc-
tivity or quality by using tools? When introducing testing tools from the 
different explained categories, it is recommended to adhere to the follow-
ing order of introduction:
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Observe the order 

of tool introduction

1. Incident management
2. Configuration management
3. Test planning
4. Test execution
5. Test specification

Remember the learning 

curve

Take into account the necessary time to learn a new tool and to establish 
its use. Due to the learning curve, productivity may even decline for some 
time instead of increasing, as would be desired. It is therefore risky to 
introduce a new tool during “hot” project phases, hoping to solve person-
nel bottlenecks then and there by introducing a misunderstood kind of 
automation.

7.2.1 Cost Effectiveness of Tool Introduction

Introducing a new tool brings with it selection, acquisition, and mainte-
nance costs. In addition, costs may arise for hardware acquisition or 
updates and employee training. Depending on tool complexity and the 
number of workstations to be equipped with the tool, the amount invested 
can rapidly grow large. The time frame in which the new test tool will start 
to pay back is interesting, as with every investment.

Make a cost-benefit analysisTest execution automation tools offer a good possibility for estimating 
the amount of effort saved when comparing an automated test to a manu-
ally executed test. The extra test programming effort must, of course, be 
taken into account. This typically results in a negative cost-benefit balance 
after only one automated test run. The achieved savings per test run accu-
mulate only after further automated regression test runs (figure 7–2). 
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The balance will become positive after a certain number of regression test 
cycles. It is difficult to give an exact estimate of the time for payback. 
Breakeven will be achieved only if the tests are designed and programmed 
for easy use in regression testing and easy maintenance. If tests are easy to 
repeat and maintain, a positive balance is definitely possible from the third 
test cycle onward for capture/replay tools. Of course, this calculation 
makes sense only when manual execution is possible at all. However, many 
tests cannot be run in a purely manual way (e.g., performance tests). They 
have to be run automatically.

Evaluate the influence 

on test quality

Merely discussing the level of test effort does not suffice. Test quality 
improvement by applying a new test tool that results in detecting and 
eliminating more faults, or results in more trustworthiness of the test, 
must also be taken into account. Development, support, and maintenance 
costs will decrease, at least in the medium term.  The savings potential is 
significantly higher for this case and therefore more interesting.

To summarize:

■ Tools may support the creative testing tasks. They help the tester to 
improve test quality.

■ Mechanical test execution may be automated. This reduces test effort 
or makes it possible to run more tests with the same test effort. How-
ever, more tests do not necessarily mean better test quality.

■ In both cases, without good test procedures or well-established test 
methods, tools do not lead to the desired cost reduction.

7.2.2 Tool Selection

After a decision is made about which test task a tool shall support, the 
actual selection (and evaluation) of the tool starts. As explained earlier, the 
investment can be very large. It is, therefore, best to proceed carefully and 
in a well-planned way. The selection process consists of the following five 
steps:

1. Requirements specification for the tool 
2. Market research (creating a list of possible candidates)
3. Tool demonstrations
4. Evaluation of the tools on the short list
5. Review of the results and selection of the tool
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For the first step, requirements specification, the following criteria may be 
relevant:

Selection criteria■ Quality of interaction with the potential test objects
■ Tester know-how regarding the tool or method
■ Possibility of integration into the existing development environment
■ Possibility of integration with other already used testing tools 
■ Platform for using the tool
■ Possibilities for integration with tools from the same supplier
■ Manufacturer’s service, reliability, and market position
■ License conditions, price, maintenance costs

These and possible further individual criteria are compiled in a list and 
then weighted according to their relative importance. Absolutely indispen-
sable criteria are identified and marked as knock-out criteria.

Market research 
and short-listing

Parallel to creating a catalogue of criteria, market research takes place: 
A list is created, listing the available products of the tool category of inter-
est. Product information is requested from suppliers or collected from the 
Internet. Based on these materials, the suppliers of the preferred candi-
dates are invited to demonstrate their respective tools. A relatively reliable 
impression of the respective company and its service philosophy can be 
gained from these demonstrations. The best vendors will then be taken 
into the final evaluation process, where primarily the following points 
need to be verified:

■ Does the tool work with the test objects and the development environ-
ment?

■ Are the features and quality characteristics that caused the respective 
tool to be considered for final evaluation fulfilled in reality? (Marketing 
can promise a lot.)

■ Is the supplier’s support staff able to provide qualified information and 
help even with nonstandard questions (before and after purchase2)?

7.2.3 Tool Introduction

After a tool is selected, it must be introduced into the organization. Nor-
mally the first step is to launch a pilot project (proof of concept). This 
should show that the expected benefits will be achieved in real projects. 

2. Many suppliers just refer to a general hotline after purchase.
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People other than the ones who helped in selecting the tool should execute 
the pilot project. Otherwise, the evaluation results could introduce bias.

Pilot operation Pilot operation should deliver additional knowledge of the technical 
details of the tool as well as experiences with the practical use of the tool 
and experiences about its usage environment. It should thus become 
apparent whether, and to what extent, there exists a need for training and 
where, if necessary, the test process should be changed. Furthermore, rules 
and conventions for general use should be developed. These may be nam-
ing conventions for files and test cases, rules for structuring the tests, and 
so on. If test drivers or test robots are introduced, it can be determined 
during the pilot project if it is reasonable to build test libraries. This should 
facilitate reuse of certain tests and test modules outside the project.

Because the new tool will always generate additional workload in the 
beginning, the introduction of a tool requires strong and ongoing commit-
ment of the new users and stakeholders. 

Coaching and training measures are important.

Success factors There are some important success factors during rollout:

■ Introduce the tool stepwise.
■ Integrate the tool’s support with the processes.
■ Implement user training and continuous coaching.
■ Make available rules and suggestions for applying the tool. 
■ Collect usage experiences and make them available to all users (hints, 

tricks, FAQs, etc.).
■ Monitor tool acceptance and gather and evaluate cost-benefit data.

Successful tool introduction follows these six steps:

1. Execute a pilot project.
2. Evaluate the pilot project experiences.
3. Adapt the processes and implement rules for usage.
4. Train the users.
5. Introduce the tool stepwise.
6. Offer coaching.

This chapter pointed out many of the difficulties and the additional effort 
involved when selecting and using tools for supporting the test process.

This is not meant to create the impression that using tools is not 
worthwhile.
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On the contrary, in larger projects, testing without the support of 
appropriate tools is not feasible. However, a careful tool introduction is 
necessary, otherwise the expensive tool quickly becomes “shelfware”; that 
is, it falls into disuse.

7.3 Summary

■ Tools are available for every phase of the test process, helping the tester 
automate test activities or improve the quality of these activities.

■ Use of a test tool is beneficial only when the test process is defined and 
controlled.

■ Test tool selection must be a careful and well-managed process because 
introducing a test tool may incur large investments.

■ Information, training, and coaching must support the introduction of 
the selected tool. This helps to assure the future users’ acceptance and 
hence the continued application of the tool.
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A Test Plan According 
to IEEE Standard 829-1998

This appendix describes the contents of a test plan according to IEEE 
Standard 829-1998.1 It can be used as a guide to prepare a test plan.

Test Plan Identifier

Specify uniquely the name and version of the test plan. The identifier must 
make it possible to clearly and precisely refer to this document distinct 
from other project documents. A standard for document identification is 
often given by rules set by the project archive or by the organization’s cen-
tral document management. Depending on the size of the project organi-
zation, the identifier may be more or less complicated. The minimum 
information to be used is the name of the test plan, its version, and its sta-
tus.

Introduction

The introduction should give a short summary of the project background.
Its intent is to help those involved in the project (customer, manage-

ment, developer, and tester) to better understand the contents of the test 
plan.

A list of documents used in developing this plan or referred to should 
be included in this chapter. This typically includes policies and standards, 
such as industry standards, company standards, project standards, cus-

1. The latest version of the IEEE 829-2008 standard [IEEE 829-2008] differentiates 
between Master Test Plan and Level Test Plan. An existing test plan created according 
to IEEE 829-1998 can be converted to conform to an IEEE 829-2008 master test plan—
for example, by using an appropriate table of cross-references. However, the 2011 syl-
labus still cites IEEE 829-1998 as relevant for the Certified Tester – Foundation Level 
examination.
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tomer standards, the project authorization (possibly the contract), project 
plan and other plans, and the specification.

Test Objects or Items

This section should contain a short overview of the parts and components 
of the product to be tested; a list of the test items including their version/ 
revision level; their transmittal media and their specification. In order to 
avoid misunderstandings, there should be a list of system parts not subject 
to testing.

Features to Be Tested

This section should identify all functions or characteristics of the system 
to be tested. The test specification should be referred to. This section 
should contain an assignment to test levels or test objects.

Features Not to Be Tested

In order to avoid misunderstanding and prevent unrealistic expectations, 
it should be described which aspects of the product shall not or cannot be 
tested. (This may be due to resource constraints or technical reasons).

 Hint ■ Because the test plan is prepared early in the project, this list will be incomplete. 
Later it may be found that some components or features cannot be tested any-
way. The test manager should then issue warnings in the status reports.

Test Approach or Strategy

This section should describe the test objectives, if possible, based on a risk 
analysis. The analysis shows which risks are threatening if faults are not 
found due to lack of testing. From this it can be derived which tests must 
be executed and which are more or less important. This assures that the 
test is concentrated on important topics.

Building on this, the test methods to be used are selected and 
described. It must be clearly visible if and why the chosen methods are 
able to achieve the test objectives, considering the identified risks and the 
available resources.
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Acceptance Criteria (Test Item Pass/Fail Criteria)

After all tests for a test object have been executed, it must be determined, 
based on the test results, if the test object can be released2 and delivered.3
Acceptance criteria or test exit criteria are defined for this end.

The criterion “defect free” is, in this context, not a very useful criterion 
because testing cannot prove that a product has no faults. Usually, criteria 
therefore include a combination of “number of tests executed,” “number of 
faults found,” and “severity of faults found.”

For example, at least 90% of the planned tests are executed correctly 
and no class 1 faults (crashes) have been found.

Such acceptance criteria can vary between the test objects. The actual 
definition of the criteria should be made dependent on the risk analysis; 
that is, for uncritical test objects, acceptance criteria can be weaker than 
for safety-critical test objects, for example. Thus, the test resources are 
concentrated on important system parts.

Suspension Criteria and Resumption Requirements

Aside from acceptance criteria, there is also a need for criteria to indicate 
a suspension or cancellation of the tests.

It may be that a test object is in such bad shape that there is no chance 
it will be accepted, even after an enormous amount of testing. To avoid 
such wasteful testing, we need criteria that will lead to termination of use-
less testing early in the testing life cycle. The test object will then be 
returned to the developer without executing all tests.

Analogous to this, criteria for resumption or continuation of the tests 
are needed. The responsible testers will typically execute an entry test 
(smoke test). Only after this is executed without trouble should the real 
test begin.

Hint■ Criteria should involve only measurements that can be measured regularly, 
easily, and reliably—for example, because they are automatically collected by 
the test tools used. The test manager should then list and interpret this data in 
every test report.

2. Release is a management decision that the tested product is seen as ”ready.”
3. To deliver may also mean to send the test object to the next test level.
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Test Documentation and Deliverables

In this section, we describe which data and results the test activities will 
deliver and in which form and to whom these results will be communi-
cated. This not only means the test results in a narrow sense (for example. 
incident reports and test protocols), it also includes planning and prepara-
tion documents such as test plans, test specifications, schedules, docu-
ments describing the transmittal of test objects, and test summary reports.

Hint ■ In a test plan, only formal documentation is mentioned. However, informal 
communication should not be forgotten. Especially in projects that are already 
in trouble, or in very stressful phases (for example, the release week), an expe-
rienced test manager should try to directly communicate with the involved 
people more than he usually would. This is not to conceal bad news, but it 
should be used to assure that the right consequences are chosen after possible 
bad news.

Testing Tasks

This section contains a list of all tasks necessary for the planning and exe-
cution of the tests, including an assignment of responsibilities. The status 
of the tasks (open, in progress, delayed, done) must be followed up. This 
point in the test plan is part of the normal project planning and follow-up 
and should therefore be reported in the regular project or test status 
reports, which are referred to here.

Test Infrastructure and Environmental Needs

This section lists the elements of the test infrastructure that are necessary 
to execute the planned tests. This typically includes test platform(s), tester 
workplaces and their equipment, test tools, development environment 
(whatever is necessary for the testers), and other tools (email, Internet 
access, Office software packages, etc.).

Hint ■ The test manager should consider the following aspects: Acquisition of the un-
available parts of a previously mentioned “wish list”; questions about budget, 
administration, and operation of the test infrastructure; the test objects; and 
tools. Often, this requires specialists, at least for some time. Specialists may 
need to be from other departments or from external providers.
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Responsibilities and Authority

How is testing organized with respect to the project? Who has what 
authority, availability, etc.? Possibly the test personnel must be divided into 
different test groups or levels. Which people have which tasks?

Hint■ Responsibilities and authority may change during the course of the project. 
Therefore, the list of responsibilities should be presented as a table, maybe an 
appendix to the test plan.

Staffing and Training Needs

This section specifies the staffing needs for implementing the plan (roles, 
qualifications, capacity, and when they are needed, as well as planning 
vacations, etc.). This planning is not only for the test personnel, it should 
also include personnel for administrating the test infrastructure (see 
above), as well as developers and customers to be included in testing.

Plans for training to provide necessary skills should be included.

Schedule

This section describes an overall schedule for the test activities, with the 
major milestones. The plan must be coordinated with the project plan and 
maintained there. Regular consultation between the project manager and 
the test manager must be implemented. The test manager should be 
informed about delays during development and must react by changing 
the detailed test plan. The project manager must react to test results and, 
if necessary, delay milestones because extra correction and testing cycles 
must be executed.

Hint■ The test manager must assure that the test and quality assurance activities are 
included in the project plan. He or she must not be an independent “state in the 
state.”

Risks and Contingencies

In the section about test approach, risks in the test object or its use are 
addressed. This section, however, addresses risks within the testing project 
itself (that is, risks when implementing the test plan, and risks resulting 
from not implementing wanted activities) because it was already clear 
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when planning that there would be no resources for them in the concrete 
project.

The minimum should be a list of risks to be monitored at certain 
points in time (for example, in connection with the regular test status 
reports) in order to find measures to minimize them.

Approval

This section contains a list of the persons or organizational units that will 
approve the test plan or need to be informed. Approval should be docu-
mented by signature. It should also be documented that parties have been 
informed after major changes, especially changes of strategy and/or per-
sonnel.

Hint ■ Respective groups or organizational units are typically development group(s), 
project management, project steering committee, software operators, software 
users, customers (clients) and naturally, the test group(s).

Depending on the project situation, the intent of the approval described 
here may be different.

The ideal situation is, “You approve that the mentioned resources will 
be financed and used in order to test this system as described here in a rea-
sonable way.”

The often-more-usual situation is, “Because of the lack of resources 
shown, tests can only be performed in an insufficient manner, testing the 
very most important parts. However, you approve this and accept that 
based on this, release decisions will be made, which may have a high risk.”

Glossary (not in IEEE829-1998, but lower case!)

Testing has no tradition for using standardized terminology. Thus, the test 
plan should contain an explanation of the testing terms used in the project. 
There is a high danger that different people will have different interpreta-
tions of testing terms. For example, just ask several people involved in the 
project for the definition of the term load testing.
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Test Plans According to IEEE Standard 829-2008

This appendix describes the contents of a test plan according to IEEE 
Standard 829-2008. It can be used as a guide to prepare a test plan.

This version of the IEEE 829-2008 standard [IEEE 829-2008] differentiates 
between ➞Master Test Plan and ➞Level Test Plan. An existing test plan 
created according to IEEE 829-1998 can be converted to conform to an 
IEEE 829-2008 master test plan and level test plans—for example, by using 
an appropriate table of cross-references. The 2015 syllabus will use IEEE 
829-2008 as reference for the Certified Tester – Foundation Level exami-
nation.

The Master Test Plan

The objective of a master test plan is to describe the overall test approach 
in a project or an organization. It describes all the different test levels, test 
activities, and test tasks to be done and their relationship. Level test plans, 
on the other hand, describe what is to be done in one test level. The older 
IEEE 829 standard had only one test plan, and it was not clear if it applied 
to a whole project or one level.

The template from the standard4

1. Introduction
1.1. Document identifier
1.2. Scope
1.3. References
1.4. System overview and key features
1.5. Test overview
1.5.1 Organization
1.5.2 Master test schedule
1.5.3 Integrity level schema
1.5.4 Resources summary
1.5.5 Responsibilities
1.5.6 Tools, techniques, methods, and metrics

4. The standard’s section 2.1. actually contains more details. In order to shorten it and 
ease the overview, only details for the development process are given here.
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2. Details of the Master Test Plan
2.1. Test processes including definition of test levels
2.1.1 Process: Management
2.1.2 Process: Acquisition
2.1.3 Process: Supply
2.1.4 Process: Development
2.1.4.1 Activity: Concept
2.1.4.2 Activity: Requirements
2.1.4.3 Activity: Design
2.1.4.4 Activity: Implementation
2.1.4.5 Activity: Test
2.1.4.6 Activity: Installation/checkout
2.1.5 Process: Operation
2.1.6 Process: Maintenance
2.1.6.1 Activity: Maintenance test
2.2. Test documentation requirements
2.3. Test administration requirements
2.4. Test reporting requirements

3. General
3.1. Glossary
3.2. Document change procedures and history

Master Test Plan Identifier

Specify the name and version of the test plan. The identifier must make it 
possible to clearly and precisely refer to this document distinct from other 
project documents. The minimum information to be used is the name of 
the test plan, its version, and its status.

1. Introduction

The introduction should give a short summary of the project background.
Its intent is to help the readers of the plan (customer, management, 

developer, regulating authorities, and tester) to better understand the con-
tents of the test plan.

The introduction should describe the entire test effort, including the 
test organization, the test schedule, and the integrity schema. A summary 
of required resources, tools and techniques might also be included in this 
section.
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1.2 Scope

Describe the purpose, goals, and scope of the test effort. 
Identify the project(s) or product(s) for which the plan is written and 

the specific processes and products covered by the test effort. Describe 
what is included and excluded, as well as assumptions and limitations. It 
is important to define clearly the limits of the test effort to control expec-
tations.

1.3 References

Include here a list of all of the applicable reference documents. The refer-
ences are separated into “external” references that are imposed external to 
the project and “internal” references that are imposed from within the pro-
ject. This section may also be at the end of the document, for example in 
chapter 3.

Referenced documents should include policies and standards, such as 
industry standards, company standards, project standards, customer 
standards, the project authorization (possibly the contract), project plan 
and other plans, and the specification.

1.4 System Overview and Key Features

This section should present the mission or business purpose of the system 
or software product under test as well as a short overview of the features, 
parts, and components of the product to be tested; a list of the test items 
including their version/revision level; their transmittal media and their 
specification. To avoid misunderstandings, there should also be a list of 
system parts not subject to testing, i.e., an overall summary of the “features 
not to be tested” chapter in the test plan according to the older standard.

1.5 Test overview

In this section, describe the test organization, the overall test schedule, and 
the integrity level scheme to be used to control testing, the major test 
resources, responsibilities, tools, techniques, and methods to be applied.

1.5.1 Organization

Describe the relationship of the test processes to other development and 
supporting processes. It may be beneficial to include an organization chart. 
Describe how testing and other tasks shall communicate. 
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1.5.2 Master Test Schedule

Outline an overall schedule for the test activities, with the major mile-
stones. The test plan must be coordinated with the project plan and main-
tained throughout the project. Regular consultation between the project 
manager and the test manager must be implemented. The test manager 
should be informed about delays during development and must react by 
changing the test plan. The project manager must react to test results and, 
if necessary, delay milestones because extra correction and testing cycles 
must be executed.

To handle changes and iterations, describe the task iteration policy for 
the re-execution of test tasks and any dependencies.

1.5.3 Integrity Level Scheme

Describe how integrity levels are identified and how they govern the test-
ing effort. The plan should document the assignment of integrity levels to 
individual documents and components as well as how integrity levels are 
used to control the testing tasks. 

1.5.4 Summary of Necessary Resources

Describe the needed test resources, including staffing, facilities, tools, and 
special procedural requirements like security, access rights, and documen-
tation control. Include a description of training needs. 

1.5.5 Responsibilities and Authority

How is testing organized with respect to the organization and the project? 
Who has what authority, availability, etc.? Possibly the test personnel must 
be divided into different test groups or levels. Which people have which 
tasks? Who shall provide support to testing?

Hint ■ Responsibilities and authority may change during the course of the project. 
Therefore, the list of responsibilities should be presented as a table, maybe an 
appendix to the test plan.

1.5.6 Tools, Techniques, Methods, and Metrics

Describe documents, hardware and software, test tools, techniques, meth-
ods, and test environment necessary for the test process. Describe the tech-
niques to be used to identify and capture reusable testware (for regression 
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testing). Include information regarding acquisition, training, support, and 
qualification for each tool, technology, and method, at least for everything 
new to the organization.

Document the metrics to be used by the test effort, and describe how 
these metrics will be collected, evaluated, and used to support the test 
objectives.

More details about topics regarding specific test levels may be 
included in level test plans.

2. Details of the Master Test Plan

This section describes the test processes, test documentation require-
ments, and test reporting requirements for the entire test effort.

2.1 Test Processes, Including Definition of Test Levels

Identify test activities and tasks to be performed for each of the test pro-
cesses and document those test activities and tasks. Provide an overview of 
the test activities and tasks for all development life cycle processes. Identify 
the test levels, including any “special” tests like security, usability, perfor-
mance, stress, recovery, and regression testing. 

If the test processes are already defined by an organization’s standards, 
a reference to those standards could be substituted for the contents of this 
section.

2.1.1 through 2.1.6 “Life cycle” Processes, i.e., Activities and Tasks

There may be up to six subsections here, for the life cycle processes Man-
agement, Acquisition, Supply, Development, Operation, and Maintenance. 
Normally for a development project, there is only the subsection about 
development.

This section contains a list of all activities and tasks necessary for the 
planning and execution of the tests, including an assignment of responsi-
bilities. The status of all these tasks (not started, in progress, delayed, 
done) must be followed up. 

Address the following eight topics for each test activity5:

a) Test tasks: Identify the test tasks to be performed as well as the degree 
of intensity and rigor in performing and documenting the task.

5. These eight topics are cited from IEEE 829-2008.
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b) Methods: Describe the methods and procedures for each test task, 
including tools. Define the criteria for evaluating the test task results.

c) Inputs: Identify the required inputs for the test task. Specify the source 
of each input. For any test activity and task, any of the inputs or outputs 
of the preceding activities and tasks may be used.

d) Outputs: Identify the required outputs from the test task. The outputs 
of the management of the test and of the test tasks will become inputs 
to subsequent processes and activities, as appropriate.

e) Schedule: Describe the schedule for the test tasks. Establish specific 
milestones for initiating and completing each task, for the receipt of 
each input, and for the delivery of each output.

f) Resources: Identify the resources for the performance of the test tasks. 
Specify resources by category (e.g., staffing, tools, equipment, facilities, 
travel budget, and training).

g) Risks (project risks) and Assumptions: Identify the risk(s) (e.g., schedule, 
resources, technical approach, or for going into production) and 
assumptions associated with the test tasks. Provide recommendations 
to eliminate, reduce, or mitigate risk(s). This section takes much of the 
information provided in the section “Risks and contingencies” of the 
old standard.

h) Roles and responsibilities: Identify for each test task the organizational 
elements that have the responsibilities for the execution of the task, and 
the nature of the roles they will play.

2.2 Test Documentation Requirements

In this section, we describe which data and results the test activities will 
deliver and in which form and to whom these results will be communi-
cated. This not only means the test results in a narrow sense (for example, 
incident reports and test protocols), it also includes planning and prepara-
tion documents such as test plans, test specifications, schedules, docu-
ments describing the transmittal of test objects, and test summary reports.

Hint ■ In a test plan, only formal documentation is mentioned. However, informal 
communication should not be forgotten. Especially in projects that are already 
in trouble, or in very stressful phases (for example, the release week), an expe-
rienced test manager should try to directly communicate with the involved 
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people more than he usually would. This is not to conceal bad news, but it 
should be used to assure that the right consequences are chosen after possible 
bad news.

2.3 Test Administration Requirements

This section should describe how the test will be administered in practice, 
during its execution.

2.3.1 Anomaly (defect) Resolution and Reporting

Describe the method of reporting and resolving anomalies (incidents, 
failures). This section of the plan defines the criticality levels for defects. 
Classification for software anomalies may be found in chapter 6 of this 
book. This section may also refer to a general standard way of defect 
handling in the organization.

2.3.2 Task Iteration Policy

Describe the criteria used to determine the extent to which a testing task 
is repeated after changes (e.g., re-reviewing, retesting, and regression test-
ing after problems have been repaired). These criteria may include assess-
ments of change extent and risk, integrity level, and effects on budget, 
schedule, and quality.

2.3.3 Deviation Policy

Describe the procedures and criteria used to deviate from the master test 
plan and level test plans. Identify the authorities responsible for approving 
deviations.

2.3.4 Control Procedures

Identify control procedures applied to the test activities. These procedures 
describe how the system and software products and test results will be con-
figured, protected, and stored.

These procedures may describe quality assurance, configuration man-
agement, data management, or other activities if they are not addressed in 
other plans or activities. Describe any security measures necessary for the 
test effort.
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2.3.5 Standards, Practices, and Conventions

Identify or reference the standards, practices, and conventions that govern 
testing tasks, if they are not “matters of fact.”

2.4 Test Reporting Requirements

Specify the purpose, content, format, recipients, and timing of all test 
reports. Test reporting consists of Test Logs, Anomaly (failure, incident) 
Reports, Interim Test Status Report(s), Level Test Report(s), and the Mas-
ter (or final) Test Report. Test reporting may also include other reports as 
deemed necessary. 

3. General

This section includes general information and could as well be put into 
chapter 1 or at the title page or into a general place accessible for all people 
in the project.

3.1 Glossary

Testing has no tradition for using standardized terminology. Thus, the test 
plan should contain an explanation of the testing terms used in the project. 
There is a high danger that different people will have different interpreta-
tions of testing terms. For example, just ask several people involved in the 
project for the definition of the term load testing.

Thus: Provide an alphabetical list of terms and acronyms that may 
require definition for the users of the plan with their corresponding defi-
nitions. You may also refer to a project glossary.

3.2 Document Change Procedures and History

The section should define the configuration management procedures to be 
followed for this document, if they are different from other documents. 
But at least the change list and history should be included.
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The Level Test Plan

This is a test plan for only one test level, like acceptance test plan, system 
test plan, etc.

The template from the standard

1. Introduction
1.1. Document identifier
1.2. Scope
1.3. References
1.4. Level in the overall sequence
1.5. Test classes and overall test conditions

2. Details for this level of test plan
2.1 Test items and their identifiers
2.2 Test Traceability Matrix
2.3 Features to be tested
2.4 Features not to be tested
2.5 Approach
2.6 Item pass/fail criteria
2.7 Suspension criteria and resumption requirements
2.8 Test deliverables

3. Test management
3.1 Planned activities and tasks; test progression
3.2 Environment/infrastructure
3.3 Responsibilities and authority
3.4 Interfaces among the parties involved
3.5 Resources and their allocation
3.6 Training
3.7 Schedules, estimates, and costs
3.8 Risk(s) and contingency(s)

4. General
4.1 Quality assurance procedures
4.2 Metrics
4.3 Test coverage
4.4 Glossary
4.5 Document change procedures and history
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It can be seen that chapters 2 and 3 in a level test plan contain many of the 
points the old standard test plan contained. Guidance for these sections is 
given before in this Appendix, under the heading of the old standard (829-
1998). Section 3.4 is new in this standard. New are also sections 4.1 
through 4.3. Sections 4.4 and 4.5 may be placed the same way as in the 
master test plan.

Guidance for section 3.4

Describe the communication between the individuals and groups identi-
fied in section 3.5. This includes what needs to be communicated, how, 
and when. A figure that illustrates the flow of information and data may 
be included.

Guidance for sections 4.1 through 4.3

4.1 Quality assurance procedures

Identify the means by which the quality of testing processes and products 
will be assured. Include or reference procedures for how problems in test-
ing will be tracked and resolved. A general Quality Assurance Plan or 
Standard Procedure may be referenced, if there exists one.

4.2 Metrics

Identify the specific measures that will be collected, analyzed, and 
reported. The metrics specified here are those that only apply to this par-
ticular test level (the global metrics are described in Master Test Plan sec-
tion 1.5.6). This may be a reference to where metrics are documented in a 
Quality Assurance Plan or to a generally used measurement program.

4.3 Test coverage

Specify the requirement(s) for test coverage. The type of coverage that is 
relevant varies by the level of test. See chapter 5 in this book for details. For 
example, unit test coverage is often expressed in terms of percentage of 
code tested (white box test coverage), and system test coverage can be a 
percentage of requirements tested (black box test coverage). 
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B Important Information about the 
Syllabus and the Certified Tester 
Exam

The Certified Tester Foundation Level syllabus version 2011 forms the 
basis of this book. A few updates to the syllabus, which is due to be released 
in 2015, are noted in the book.

The respective national boards may create and maintain additional 
national versions of the syllabus. These may contain minor deviations 
from the English original, such as, for example, references to local stand-
ards. The national boards coordinate and guarantee mutual compatibility 
of their curricula and exams. In this context, the responsible board is the 
International Software Testing Qualifications Board [URL: ISTQB]. 

The exams are based on the current version of the syllabus in its cor-
responding examination language at the time of examination. The exams 
are offered and executed by the respective national board or by the 
appointed certification body. Further information on the curricula and the 
exams can be found through [URL: ISTQB]. The ISTQB website provides 
links to the national boards.

For didactic reasons, the subjects contained in this book may be 
addressed in a different order than presented in the syllabus. The size of 
the individual chapters does not indicate the relevance of their contents 
for the exam. Some subjects are covered in more detail in the book. Some 
passages, marked as excursions, go beyond the scope of the syllabus. In 
any case, the exams are based on the official syllabus.

ISTQB will release a new version of the Foundation Level syllabus in 
2015. Some changes that were obvious at the time this book was written 
are included and noted as such.
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The exercises and questions contained in this book should be 
regarded solely as practice material and examples. They are not represent-
ative of the official examination questions.

They are presented only so the reader can get a better understanding 
of the material. 

Readers who use this book to prepare for the exam should also look at 
the ISTQB syllabus, official mock exams, exam rules, and the ISTQB glos-
sary. The examination is based only on the ISTQB documents; see [URL: 
ISTQB] as well as your national board website.
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C Exercises1

Exercises for chapter 2

2.1 Define the terms failure, fault, and error.
2.2 What is defect masking?
2.3 Explain the difference between testing and debugging.
2.4 Explain why each test is a kind of sampling.
2.5 List the main characteristics of software quality according to ISO 

9126. (To prepare for the examination after syllabus version 2015, 
refer to ISO 25010:2011.)

2.6 Define the term reliability.
2.7 Explain the phases of the fundamental test process.
2.8 What is a test oracle?
2.9 Why shouldn’t a developer test her own programs?

Exercises for chapter 3

3.1 Explain the different phases of the general V-model.
3.2 Define the terms verification and validation.
3.3 Explain why verification makes sense even when a careful valida-

tion is performed (and vice versa).
3.4 Characterize typical test objects in component testing.
3.5 Discuss the idea of “test-first.”
3.6 List the goals of the integration test.
3.7 What integration strategies exist and how do they differ?
3.8 Name the reasons for executing tests in a separate test infrastructure.

1. These exercises are designed to help you make sure you have understood the terms and 
processes described in the book and that you can recognize and describe them. 
Answers to the questions can be found in the relevant chapters and are not listed sep-
arately. The questions listed here are not designed to directly prepare you for the ISTQB 
examination. To prepare for the ISTQB exam, please refer to the mock exam shown at 
[URL: ISTQB].
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3.9 Describe four typical forms of acceptance tests.
3.10 Explain requirements-based testing.
3.11 Define load test, performance test, and stress test, and describe the 

differences between them.
3.12 How do retest and regression tests differ?
3.13 Why are regression tests especially important in incremental devel-

opment?
3.14 According to the general V-model, during which project phase 

should the test plan be defined?

Exercises for chapter 4

4.1 Describe the fundamental steps for executing a review.
4.2 What different kinds of reviews exist?
4.3 Which roles participate in a technical review?
4.4 What makes reviews an efficient means for quality assurance?
4.5 Explain the term static analysis.
4.6 How are static analysis and reviews related?
4.7 Static analysis cannot uncover all program faults. Why?
4.8 What different kinds of data flow anomalies exist?

Exercises for chapter 5

5.1 What is a dynamic test?
5.2 What is the purpose of a test harness?
5.3 Describe the difference(s) between black box and white box test 

design techniques.
5.4 Explain the equivalence class partition technique.
5.5 What is a representative?
5.6 Define the test completeness criterion for equivalence class coverage.
5.7 Why is boundary value analysis a good supplement to equivalence 

class partitioning?
5.8 List further black box techniques.
5.9 Explain the term statement coverage.
5.10 What is the difference between statement and branch testing?
5.11 What is the purpose of instrumentation?
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Exercises for chapter 6

6.1 What basic models can be distinguished for division of responsibil-
ity for testing tasks between development and test?

6.2 Discuss the benefits and drawbacks of independent testing.
6.3 Which roles are necessary in testing and which qualifications are 

necessary to fill them?
6.4 State the typical tasks of a test manager.
6.5 Discuss why test cases are prioritized and mention criteria for pri-

oritizing.
6.6 What are the purposes of test start and exit criteria? Name and 

describe examples of such criteria.
6.7 Define the term test strategy.
6.8 Discuss four typical approaches to determine a test strategy.
6.9 Define the term risk and mention risk factors relevant for testing.
6.10 What idea is driving risk-based testing?
6.11 What different kinds of metrics can be distinguished for monitoring 

test progress?
6.12 What information should be contained in a test status report?
6.13 What data should be contained in an incident report?
6.14 What is the difference between defect priority and defect severity?
6.15 What is the purpose of an incident status model?
6.16 What is the task of a change control board?
6.17 From the point of view of testing, what are the requirements for 

configuration management?
6.18 What different kinds of basic standards exist?

Exercises for chapter 7

7.1 What main functions do test management tools offer?
7.2 Why is it reasonable to couple requirements and test management 

tools and exchange data?
7.3 What different types of test data generators exist?
7.4 What type of test data generator can also generate expected output 

values? Why can’t other types of test data generators do the same?
7.5 What is a test driver?
7.6 Explain the general way a capture/playback tool works.
7.7 Describe the principle of data-driven testing.
7.8 What steps should be taken when selecting a test tool?
7.9 What steps should be taken when introducing a tool?



246 C Exercises



 Glossary 247
Glossary

This glossary contains terms from the area of software testing as well as addi-
tional software engineering terms related to software testing. The terms are 
marked with an arrow at their first place of occurrence in the book. The terms 
not listed in the ISTQB glossary are underlined in this glossary.

The definitions of most of the following terms are taken from the “Stand-
ard Glossary of Terms used in Software Testing” Version 2.2 (2013), pro-
duced by the Glossary Working Party of the International Software Testing 
Qualifications Board (ISTQB). You can find the current version of the glos-
sary here: [URL: ISTQB]. The ISTQB glossary refers to further sources of 
definitions.

acceptance test(ing)
Formal testing with respect to user needs, requirements, and business pro-
cesses conducted to determine whether or not a system satisfies the accept-
ance criteria and to enable the user, customers, or other authorized entity 
to determine whether or not to accept the system.

This test may be
1. A test from the user viewpoint
2. A partial set of an existing test, which must be passed, and an entry 

criterion (start criterion) for the test object to be accepted into a test 
level

actual result
The behavior produced/observed when a component or system is tested.

alpha testing
Simulated or actual operational testing by potential customers/users or an 
independent test team at the developer’s site but outside of the develop-
ment organization. Alpha testing is used for off-the-shelf software as a 
form of internal acceptance testing.
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analytical quality assurance
Diagnostic based measures (for example, testing) to measure or evaluate 
the quality of a product.

anomaly
Any condition that deviates from expectations based on requirements 
specifications, design documents, user documents, standards, etc. or from 
someone’s perception or experience. Anomalies may be found during, but 
not limited to, reviewing, testing, analysis, compilation, or use of software 
products or applicable documentation. [IEEE 1044] Also called bug, defect, 
deviation, error, fault, failure, incident, problem.

atomic (partial) condition
Boolean expression containing no Boolean operators (AND, OR, NOT, 
etc.), maximally containing relational operators like < or >.

audit
An independent evaluation of software products or processes to ascertain 
compliance to standards, guidelines, specifications, and/or procedures 
based on objective criteria, including documents that specify the following:
■ The form or content of the products to be produced
■ The process by which the products shall be produced
■ How compliance to standards or guidelines shall be measured

back-to-back testing
Testing in which two or more variants of a component or system are exe-
cuted with the same inputs, and then the outputs are compared and ana-
lyzed in case of discrepancy.

bespoke software
See special software.

beta testing
Operational testing by representative users/customers in the production 
environment of the user/customer. With a beta test, a kind of external 
acceptance test is executed in order to get feedback from the market and 
in order to create an interest with potential customers. It is done before the 
final release.  Beta test is often used when the number of potential produc-
tion environments is large.
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black box test design techniques
Repeatable procedure to derive and/or select test cases based on an analysis 
of the specification, either functional or nonfunctional, of a component or 
system without reference to its internal structure.

blocked test case
A test case that cannot be executed because the preconditions for its exe-
cution cannot be fulfilled.

boundary value analysis
Failure-oriented black box test design technique in which test cases are 
designed based on boundary values (at boundaries or right inside and out-
side of the boundaries of the equivalence classes).

branch
The expression branch is used as follows:
■ When a component uses a conditional change of the control flow from 

one statement to another one (for example, in an IF statement).
■ When a component uses a nonconditional change of the control flow 

from one statement to another one, with the exception of the next 
statement (for example, using GOTO statements).

■ When the change of control flow is through more than one entry point 
of a component. An entry point is either the first statement of a compo-
nent or any statement that can be directly reached from the outside of 
the component.

A branch corresponds to a directed connection (arrow) in the control flow 
graph.

branch coverage
The percentage of branches or decisions of a test object that have been exe-
cuted by a test suite. 

branch testing
A control-flow-based white box test design technique that requires execut-
ing all branches of the control flow graph (or every outcome of every deci-
sion) in the test object.

bug
See defect.
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business-process-based testing
An approach to testing in which test cases are designed based on descrip-
tions and/or knowledge of business processes.

capture/playback tool, capture-and-replay tool
A tool for supporting test execution. User inputs are recorded during man-
ual testing in order to generate automated test scripts that are executable 
and repeatable. These tools are often used to support automated regression 
testing.

cause-effect graphing
A function-oriented black box test design technique in which test cases are 
designed from cause-effect graphs, a graphical form of the specification. 
The graph contains inputs and/or stimuli (causes) with their associated 
outputs (effects), which can be used to design test cases.

change
Rewrite or new development of a released development product (docu-
ment, source code).

change order
Order or permission to perform a change of a development product.

change request
1. Written request or proposal to perform a specific change for a devel-

opment product or to allow it to be implemented.
2. A request to change some software artifact due to a change in require-

ments.

class test
Test of one or several classes of an object-oriented system. 

See also component testing.

code-based testing
See structural test and white box test design technique.

commercial off-the-shelf (COTS) software
A software product that is developed for a larger market or the general 
market (i.e., for a large number of customers) and that is delivered to many 
customers in identical form. Also called standard software.

comparator
A tool to perform automated comparison of actual results with expected 
results.
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complete testing
See exhaustive testing.

component
1. A minimal software item that has its own specification or that can be 

tested in isolation.
2. A software unit that fulfills the implementation standards of a compo-

nent model (EJB, CORBA, .NET).

component integration test(ing)
See integration test(ing).

component test(ing)
The testing of individual software components. 

concrete (physical or low level) test case
A test case with concrete values for the input data and expected results. 

See also logical test case.

condition test(ing)
Control-flow-based white box test design technique in which every (par-
tial) condition of a decision must be executed both TRUE and FALSE.

condition determination testing
A white box test design technique in which test cases are designed to exe-
cute single-condition outcomes that independently affect a decision out-
come.

configuration
1. The composition of a component or system as defined by the number, 

nature, and interconnections of its constituent parts.
2. State of the environment of a test object, which must be fulfilled as a 

precondition for executing the test cases.

configuration item
Software object or test environment that is under configuration manage-
ment.

configuration management
Activities for managing the configurations.

constructive quality assurance
The use of methods, tools, and guidelines that contribute to making sure 
the following conditions are met:
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■ The product to be produced and/or the production process have cer-
tain attributes from before.

■ Errors and mistakes are minimized or prevented.

control flow
An abstract representation of all possible sequences of events (paths) dur-
ing execution of a component or system. Often represented in graphical 
form, see control flow graph.

control flow anomaly
Statically detectable anomaly in execution of a test object (for example, 
statements that aren’t reachable).

control-flow-based test 
Dynamic test, whose test cases are derived using the control flow of the test 
object and whose test coverage is determined against the control flow.

control flow graph
■ A graphical representation of all possible sequences of events (paths) in 

the execution through a component or system.
■ A formal definition: A directed graph G = (N, E, nstart, nfinal). N is the 

finite set of nodes. E is the set of directed branches. nstart is the start 
node. nfinal is the end node. Control flow graphs are used to show the 
control flow of components.

coverage
Criterion for the intensity of a test (expressed as a percentage), differing 
according to test method. Coverage can usually be found by using tools.

cyclomatic number
Metric for complexity of a control flow graph. It shows the number of lin-
early independent paths through the control flow graph or a component 
represented by the graph.

data quality
The degree to which data in an IT system is complete, up-to-date, consist-
ent, and (syntactically and semantically) correct.

data flow analysis
A form of static analysis that is based on the definition and usage of vari-
ables and shows wrong access sequences for the variable of the test object.

data flow anomaly
Unintended or unexpected sequence of operations on a variable.



 Glossary 253
data flow coverage
The percentage of definition-use pairs that have been executed by a test 
suite.

data flow test techniques
White box test design techniques in which test cases are designed using 
data flow analysis and where test completeness is assessed using the 
achieved data flow coverage.

data security (security)
Degree to which a product or system protects information and data so that 
persons or other products or systems have the degree of data access appro-
priate to their types and levels of authorization [ISO 25010].

From [ISO 9126]: The capability of the software product to protect 
programs and data from unauthorized access, whether this is done volun-
tarily or involuntarily.

dead code
See unreachable code.

debugger
A tool used by programmers to reproduce failures, investigate the state of 
programs, and find the corresponding defect. Debuggers enable program-
mers to execute programs step-by-step, to stop a program at any program 
statement, and to set and display program variables.

debugging
The process of finding, analyzing, and removing the causes of failures in 
software.

decision coverage 
The percentage of decision outcomes that have been exercised by a test 
suite. 100% decision coverage implies both 100% branch coverage and 
100% statement coverage. 

See also branch coverage.

decision table
A table showing rules that consist of combinations of inputs and/or stimuli 
(causes) with their associated outputs and/or actions (effects). These tables 
can be used to design test cases.

decision test(ing)
Control-flow-based white box test design technique requiring that each 
decision outcome (TRUE and FALSE) is used at least once for the test 
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object. (An IF statement has two outcomes; a CASE or SWITCH statement 
has as many outcomes as there are given.)

defect
A flaw in a component or system that can cause it to fail to perform its 
required function, such as, for example, an incorrect statement or data def-
inition. A defect, if encountered during execution, may cause a failure of 
the component or system.

defect database
1. List of all known defects in the system, a component, and their associ-

ated documents as well as their states.
2. A current and complete list with information about known failures.

Defect Detection Percentage (DDP)
The number of defects found at test time or in a test level divided by the 
number found altogether in that period plus the number found until a 
future defined time point in time (for example, six months after release).

defect management
The process of recognizing, investigating, taking action, and disposing of 
detected defects. It involves recording defects, classifying them, and iden-
tifying their impact.

defect masking
An occurrence in which one defect prevents the detection of another.

development model
See software development model.

developer test
A test that is under the (sole) responsibility of the developer of the test 
object (or the development team). Often seen as equal to component test.

driver
A program or tool that makes it possible to execute a test object, to feed it 
with test input data, and to receive test output data and reactions.

dummy
A special program, normally restricted in its functionality, to replace the 
real program during testing.

dynamic analysis
The process of evaluating the behavior (e.g., memory performance, CPU 
usage) of a system or component during execution. 
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dynamic tests
Tests that are executing code. Tests in a narrow sense, i.e., how the general 
public understands testing. The opposite are static tests. Static and 
dynamic tests taken together form the whole topic of testing.

efficiency
A set of software characteristics (for example, execution speed, response 
time) relating to performance of the software and use of resources (for 
example, memory) under stated conditions (normally increasing load).

equivalence class
See equivalence partition.

equivalence partition
A portion of an input or output domain for which the behavior of a com-
ponent or system is assumed to be the same; judgment being based on the 
specification.

equivalence class partitioning
Partitioning input or output domains of a program into a limited set of 
classes, where the elements of a class show equivalent functional behavior.

From the ISTQB glossary: A black box test design technique in which 
test cases are designed to execute representatives from equivalence parti-
tions. In principle, test cases are designed to cover each partition at least 
once.

error
A human action that produces an incorrect result. Also a general, infor-
mally used term for terms like mistake, fault, defect, bug, failure.

error guessing
A test design technique where the experience of the tester is used to anti-
cipate what defects might be present in the component or system under 
test as a result of errors made and to design tests specifically to expose 
them.

exception handling
Behavior of a component or system in response to wrong input, from 
either a human user or another component or system, or due to an internal 
failure.

exhaustive testing
A test approach in which the test suite comprises all combinations of input 
values and preconditions. Usually this is not practically achievable.
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exit criteria
The set of generic and specific conditions, agreed upon with the stakehold-
ers, for permitting a process to be officially completed. The purpose of exit 
criteria is to prevent a task from being considered completed when there 
are still outstanding parts of the task that have not been finished. Achiev-
ing a certain degree of test coverage for a white box test is an example of 
an exit criterion.

expected result
The predicted or expected output or behavior of a system or its compo-
nents, as defined by the specification or another source (for every test 
case).

exploratory testing
An informal test design technique where the tester actively controls the 
design of the tests as those tests are performed. The tester uses the infor-
mation gained while testing to design new and better tests. 

Extreme Programming
A lightweight agile software engineering methodology used whereby a 
core practice is test-first programming.

failure
1. Deviation of the component or system from its expected delivery, ser-

vice, or result. (For a test result, the observed result and the expected 
[specified or predicted] result do not match.)

2. Result of a fault that, during test execution, shows an externally ob-
servable wrong result.

3. Behavior of a test object that does not conform to a specified function-
ality that should be suitable for its use.

failure class / failure classification / failure taxonomy
Classification of the found failures by their severity from a user point of 
view (for example, the degree of impairment of product use).

failure priority
Determination of how urgent it is to correct the cause of a failure by taking 
into account failure severity, necessary correction work, and the effects on 
the whole development and test process.

fault
An alternative term for defect.
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fault masking
A fault in the test object is compensated by one or more faults in other 
parts of the test object in such a way that it does not cause a failure. (Note: 
Such faults may then cause failures after other faults have been corrected.)

fault revealing test case
A test case that, when executed, leads to a different result than the specified 
or expected one.

fault tolerance
1. The capability of the software product or a component to maintain a spec-

ified level of performance in case of wrong inputs (see also robustness).
2. The capability of the software product or a component to maintain a 

specified level of performance in case of software faults (defects) or of 
infringement of its specified interface. 

field test(ing)
Test of a preliminary version of a software product by (representatively) 
chosen customers with the goal of finding influences from incompletely 
known or specified production environments. Also a test to check market 
acceptance. 

See also beta testing.

finite state machine
A computation model consisting of a limited number of states and state 
transitions, usually with corresponding actions. Also called state machine.

functional requirement
A requirement that specifies a function that a component or system must 
perform. 

See also functionality.

functional testing
1. Checking functional requirements.
2. Dynamic test for which the test cases are developed based on an anal-

ysis of the functional specification of the test object. The completeness 
of this test (its coverage) is assessed using the functional specification.

functionality
The capability of the software product to provide functions that meet 
stated and implied needs when the software is used under specified condi-
tions. Functionality describes WHAT the system must do. Implementation 
of functionality is the precondition for the system to be usable at all. Func-
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tionality includes the following characteristics: suitability, correctness, 
interoperability, compliance, and security [ISO 9126].

GUI
Graphical user interface.

incident database
A collection of information about incidents, usually implemented as a 
database. An incident database shall make it possible to follow up incidents 
and extract data about them.

informal review
A review not based on a formal (documented) procedure.

inspection
A type of review that relies on visual examination of documents to detect 
defects—for example, violations of development standards and noncon-
formance to higher-level documentation. Inspection is the most formal 
review technique and therefore always based on a documented procedure. 

instruction
See statement.

instrumentation
The insertion of additional logging or counting code into the source code 
of a test object (by a tool) in order to collect information about program 
behavior during execution (e.g., for measuring code coverage).

integration
The process of combining components or systems into larger assemblies.

integration test(ing)
Testing performed to expose defects in the interfaces and in the interac-
tions between integrated components.

level test plan
A plan for a specified level of testing. It identifies the items being tested, 
the features to be tested, the testing tasks to be performed, the personnel 
responsible for each task, and the associated risk(s). In the title of the plan, 
the word level is replaced by the organization’s name for the particular level 
being documented by the plan (e.g., Component Test Plan, Component 
Integration Test Plan, System Test Plan, and Acceptance Test Plan).
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load test(ing)
Measuring the behavior of a system as the load increases (e.g., increase in 
the number of parallel users and/or number of transactions) in order to 
determine what load can be handled by the component or system. (Load 
testing is a kind of performance testing.)

logical test case
A test case without concrete values for the input data and expected results. 
Usually, value ranges (equivalence classes) are given. 

maintainability
The ease with which a software product can be modified to correct defects, 
modified to meet new requirements, modified to make future mainte-
nance easier, or adapted to a changed environment.

maintenance / maintenance process
Modification of a software product after delivery to correct defects, to 
improve performance or other attributes, or to adapt the product to a 
modified environment. 

management review
1. A review evaluating project plans and development processes.
2. A systematic evaluation of software acquisition, supply, development, 

operation, or maintenance process performed by or on behalf of man-
agement that monitors progress, determines the status of plans and 
schedules, confirms requirements and their system allocation, or eval-
uates the effectiveness of management approaches to achieve fitness 
for purpose.

master test plan
A detailed description of test objectives to be achieved and the means and 
schedule for achieving them, organized to coordinate testing activities for 
some test object or set of test objects. A master test plan may comprise all 
testing activities on the project; further detail of particular test activities 
could be defined in one or more test subprocess plans (for example, a sys-
tem test plan or a performance test plan or level test plans).

metric
1. A value from measuring a certain program or component attribute. 

Finding metrics is a task for static analysis.
2. A measurement scale and the method used for measurement.
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milestone
This marks a point in time in a project or process at which a defined result 
should be ready.

mistake
See error.

mock-up, mock, mock object
A program in the test environment that takes the place of a stub or dummy 
but contains more functionality. This makes it possible to trigger desired 
results or behavior.

moderator
The leader and main person responsible for an inspection or a review 
meeting.

module testing
Test of a single module of a modular software system. 

See component testing.

monitor
A software tool or hardware device that runs concurrently with the 
component or system under test and supervises, records, analyzes, and/or 
verifies its behavior.

multiple-condition testing
Control-flow-based white box test design technique in which test cases are 
designed to execute all combinations of single-condition outcomes (true 
and false) within one decision statement.

negative test(ing)
1. Usually a functional test case with inputs that are not allowed (follow-

ing the specification). The test object should react in a robust way, 
such as, for example, rejecting the values and executing appropriate 
exception handling.

2. Testing aimed at showing that a component or system does not work, 
such as, for example, a test with wrong input values. Negative testing is 
related to the testers’ attitude rather than a specific test approach or 
test design technique.

nonfunctional requirement
A requirement that does not directly relate to functionality but to how well 
or with which quality the system fulfills its function. Its implementation 
has a great influence on how satisfied the customer or user is with the sys-
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tem. The attributes from [ISO 9126] are reliability, efficiency, usability, 
maintainability, and portability.

The attributes from [ISO 25010] are performance efficiency, compati-
bility, usability, reliability, security, maintainability, and portability.

nonfunctional testing
Testing the nonfunctional requirements.

nonfunctional tests
Tests for the nonfunctional requirements.

patch
1. A modification made directly to an object code without modifying the 

source code or reassembling or recompiling the source program.
2. A modification made to a source program as a last-minute fix or as an 

afterthought.
3. Any modification to a source or object program.
4. To perform a modification such as described in the preceding three 

definitions.
5. Unplanned release of a software product with corrected files in order 

to, possibly in a preliminary way, correct special (often blocking) 
faults. 

path
1. A path in the program code: A sequence of events (e.g., executable 

statements) of a component or system from an entry point to an exit 
point.

2. A path in the control flow graph: An alternating sequence of nodes 
and branches in a control flow graph. A complete path starts with the 
node “nstart” and ends with the node “nfinal” of the control flow 
graph. Executable and not executable paths can be distinguished.

path testing, path coverage
Control-flow-based white-box test design technique that requires execut-
ing all different complete paths of a test object. In practice, this is usually 
not feasible due to the large number of paths.

performance
The degree to which a system or component accomplishes its designated 
functions within given constraints regarding processing time and through-
put rate. In [ISO 25010] called performance efficiency. 
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performance testing
The process of testing to determine the performance of a software product 
for certain use cases, usually dependent on increasing load.

Point of Control (PoC)
Interface used to send test data to the test object.

Point of Observation (PoO)
Interface used to observe and log the reactions and outputs of the test 
object.

postconditions
Environmental and state conditions that must be fulfilled after the execu-
tion of a test or test procedure.

precondition
Environmental and state conditions that must be fulfilled before the com-
ponent or system can be executed with a particular test or test procedure.

preventive software quality assurance
Use of methods, tools, and procedures that contribute to designing quality 
into the product. As a result of their application, the product should then 
have certain desired characteristics, and faults are prevented or their effects 
minimized.

Note: Preventive (constructive) software quality assurance is often 
used in early stages of software development. Many defects can be avoided 
when the software is developed in a thorough and systematic manner.

problem
See defect.

problem database
1. A list of known failures or defects/faults in a system or component and 

their state of repair.
2. A database that contains current and complete information about all 

identified defects.

process model
See software development model.

production environment
The hardware and software products, as well as other software with its data 
content (including operating systems, database management systems and 
other applications), that are in use at a certain user site.
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This environment is the place where the test object will be operated or 
used.

quality
1. The totality of characteristics and their values relating to a product or 

service. They relate to the product’s ability to fulfill specified or im-
plied needs.

2. The degree to which a component, system, or process meets user/cus-
tomer needs and expectations.

3. The degree to which a set of inherent characteristics fulfills require-
ments.

quality assurance
All activities within quality management focused on providing confidence 
that quality requirements are fulfilled. 

quality attribute
1. A characteristic of a software product used to judge or describe its 

quality. A software quality attribute can also be refined through sev-
eral steps into partial attributes.

2. Ability or characteristic which influences the quality of a unit.

quality characteristic
See quality attribute.

random testing
A black box test design technique where test cases are selected, possibly 
using a pseudo-random generation algorithm, to match an operational 
profile in the production environment. Note: This technique can, among 
others, be used for testing nonfunctional attributes such as reliability and 
performance.

regression testing
Testing a previously tested program or a partial functionality following 
modification to show that defects have not been introduced or uncovered 
in unchanged areas of the software as a result of the changes made. It is 
performed when the software or its environment is changed.

release
A particular version of a configuration item that is made available for a 
specific purpose, such as, for example, a test release or a production 
release.
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reliability
A set of characteristics relating to the ability of the software product to per-
form its required functions under stated conditions for a specified period 
of time or for a specified number of operations. 

requirement
A condition or capability needed by a user to solve a problem or achieve 
an objective that must be met or possessed by a system or system compo-
nent to satisfy a contract, standard, specification, or other formally 
imposed document.

requirements-based testing
An approach to testing in which test cases are designed based on test objec-
tives and test conditions derived from requirements, such as, for example, 
tests that exercise specific functions or probe nonfunctional attributes such 
as reliability or usability.

requirements definition
1. Written documentation of the requirements for a product or partial 

product to be developed. Typically, the specification contains func-
tional requirements, performance requirements, interface descrip-
tions, design requirements, and development standards.

2. Phase in the general V-model in which the requirements for the sys-
tem to be developed are collected, specified, and agreed upon.

retesting
Testing that executes test cases that failed the last time they were run in 
order to verify the success of correcting faults.

review
1. Measuring, analyzing, checking of one or several characteristics of a 

unit (the review object), and comparing with defined requirements in 
order to decide if conformance for every characteristic has been 
achieved.

2. Abstract term for all analytical quality assurance measures independ-
ent of method and object.

3. An evaluation of a product or project status to ascertain discrepancies 
of the planned work results from planned results and to recommend 
improvements. Reviews include management review, informal review, 
technical review, inspection, and walkthrough. 
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reviewable (testable)
A work product or document is reviewable or testable if the work is com-
plete enough to enable a review or test of it.

risk
A factor that could result in future negative consequences; usually 
expressed as impact and likelihood.

risk-based testing
An approach to testing to reduce the level of product risks and inform 
stakeholders of their status, starting in the initial stages of a project. It 
involves the identification of product risks and the use of risk levels to 
guide the test process.

robustness
The degree to which a component or system can function correctly in the 
presence of invalid inputs or stressful or extreme environmental condi-
tions. 

robustness test(ing)
See negative testing.

role
Description of specific skills, qualifications and work profiles in software 
development. These should be filled by the persons (responsible for these 
roles) in the project.

safety-critical system
A system whose failure or malfunction may result in death or serious 
injury to people, loss or severe damage to equipment, or environmental 
harm.

security test
Testing to determine the access or data security of the software product. 
Also testing for security deficiencies.

severity
The degree of impact that a defect has on the development or operation of 
a component or system.

simulator
1. A tool with which the real or production environment is modeled.
2. A system that displays chosen patterns of behavior of a physical or ab-

stract system.
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smoke test
1. Usually an automated test (a subset of all defined or planned test cases) 

that covers the main functionality of a component or system in order 
to ascertain that the most crucial functions of a program work but not 
bothering with finer details. 

2. A smoke test is often implemented without comparing the actual and 
the expected output. Instead, a smoke test tries to produce openly vis-
ible wrong results or crashes of the test object. It is mainly used to test 
robustness.

software development model/software development process
Model or process that describes a defined organizational framework of 
software development. It defines which activities shall be executed by 
which roles in which order, which results will be produced, and how the 
results are checked by quality assurance.

software item
Identifiable (partial) result of the software development process (for exam-
ple, a source code file, document, etc.).

software quality
The totality of functionality and features of a software product that bear on 
its ability to satisfy stated or implied needs.

specification
A document that specifies, ideally in a complete, precise, concrete and ver-
ifiable form, the requirements or other characteristics of a component or 
system. It serves the developers as a basis for programming, and it serves 
the testers as a basis for developing test cases with black box test design 
methods. (Often, a specification includes procedures for determining 
whether these requirements have been satisfied.)

special software
Software developed for one or a group of customers. The opposite is stand-
ard or commercial off-the-shelf (COTS) software. The British term is 
bespoke software.

state diagram
A diagram or model that describes the states that a component or system 
can assume and that shows the events or circumstances that cause and/or 
result from a change from one state to another. 
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state transition testing
A black box test design technique in which test cases are designed to exe-
cute valid and invalid state transitions of the test object from the different 
states. The completeness (coverage) of such a test is judged by looking at 
the states and state transitions.

statement
A syntactically defined entity in a programming language. It is typically the 
smallest indivisible unit of execution. Also referred to as an instruction.

statement test(ing)
Control-flow-based test design technique that at the least requires that 
every executable statement of the program has been executed once.

statement coverage
The percentage of executable statements that have been exercised by a test 
suite.

static analysis
Analysis of a document (e.g., requirements or code) carried out without 
executing it.

static analyzer
A tool that carries out static analysis.

static testing
Testing of a component or system at the specification or implementation 
level without execution of any software (e.g., using reviews or static 
analysis).

stress testing
Test of system behavior with overload. For example, running it with too 
high data volumes, too many parallel users, or wrong usage. 

See also robustness.

structural test(ing), structure-based test(ing)
White box test design technique in which the test cases are designed using 
the internal structure of the test object. Completeness of such a test is 
judged using coverage of structural elements (for example, branches, 
paths, data). General term for control- or data-flow-based test.
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stub
A skeletal or special-purpose implementation of a software component, 
needed in component or integration testing and used to replace or simulate 
not-yet-developed components during test execution.

syntax testing
A test design technique in which test cases are designed based on a formal 
definition of the input syntax.

system integration testing
Testing the integration of systems (and packages); testing interfaces to 
external organizations (e.g., Electronic Data Interchange, Internet).

system testing
The process of testing an integrated system to ensure that it meets specified 
requirements. 

technical review
A peer group discussion activity that focuses on achieving consensus on 
the technical approach to be taken. A technical review is also known as a 
peer review. 

test
A set of one or more test cases

test automation
1. The use of software tools to design or program test cases with the goal 

to be able to execute them repeatedly using the computer.
2. To support any test activities by using software tools.

test basis
All documents from which the requirements of a component or system can 
be inferred. The documentation on which the design and choice of the test 
cases is based. 

test bed
An environment containing hardware, instrumentation, simulators, soft-
ware tools, and other support elements needed to conduct a test. Also 
called test environment. Also used as an alternative term for test harness.

test case
A set of input values, execution preconditions, expected results, and 
execution postconditions developed for a particular objective or test con-
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dition, such as to exercise a particular program path or to verify compli-
ance with a specific requirement.

test case explosion
Expression for the exponentially increasing work for an exhaustive test 
with increasing numbers of parameters.

test case specification
A document specifying a set of test cases. 

test condition
An item or event of a component or system that can be verified by one or 
more test cases, such as, for example, a function, transaction, feature, qual-
ity attribute, or structural element.

test coverage
See coverage.

test cycle
1. Execution of the fundamental test process against a single identifiable 

release of the test object. Its end result are orders for defect corrections 
or changes.

2. Execution of a series of test cases.

test data
1. Input or state values for a test object and the expected results after ex-

ecution of the test case.
2. Data that exists (for example, in a database) before a test is executed 

and that affects or is affected by the component or system under test.

test design technique
A planned procedure (based on a set of rules) used to derive and/or select 
test cases. There are specification-based, structure-based, and experience-
based test design techniques. Also called test technique.

test driver
See driver.

test effort
The resources (to be estimated or analyzed) for the test process.

test environment
See test bed.
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test evaluation
Analysis of the test protocol or test log in order to determine if failures have 
occurred. If necessary, these are assigned a classification.

test execution
The process of running test cases or test scenarios (an activity in the test 
process) that produce actual result(s).

test harness (test bed)
A test environment comprising all stubs and drivers needed to execute test 
cases. Even logging and evaluation tasks may be integrated into a test 
harness.

test infrastructure
The artifacts needed to perform testing, consisting usually of test environ-
ments, test tools, office environment for the testers and its equipment, and 
other tools (like mail, Internet, text editors, etc.).

testing
The process consisting of all life cycle activities, both static and dynamic, 
concerned with planning, preparation, and evaluation of software prod-
ucts and related work products to determine that they satisfy specified 
requirements, to demonstrate that they are fit for purpose and to detect 
defects.

test interface
See Point of Control (PoC) and Point of Observation (PoO).

test level
A group of test activities that are executed and managed together. A test 
level is linked to the responsibilities in a project. Examples of test levels are 
component test, integration test, system test, and acceptance test (from the 
generic V-model).

test log
The written result of a test run or a test sequence (in the case of automated 
tests often produced by test tools). From the log it must be possible to see 
which parts were tested when, by whom, how intensively, and with what 
result.

test logging
The process of recording information about tests executed into a test log.
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test management
1. The planning, estimating, monitoring, control, and evaluation of test 

activities, typically carried out by a test manager.
2. Group of persons responsible for a test.

test method
See test design technique.

test metric
A measurable attribute of a test case, test run, or test cycle, including 
measurement instructions.

test object
The component, integrated partial system, or system (in a certain version) 
that is to be tested.

test objective
A reason or purpose for designing and executing a test. Examples are as 
follows:
1. General objective: Finding defects.
2. Finding special defects using suitable test cases.
3. Showing that certain requirements are fulfilled in or by the test object 

as a special objective for one or more test cases.

test oracle
An information source to determine expected results of a test case (usually 
the requirements definition or specifications).

A test oracle may also be an existing system (for a benchmark), other 
software, a user manual, or an individual’s specialized knowledge, but it 
should not be the code. This is because then the code is used as a basis for 
testing, thus it is tested against itself.

test phase
A set of related activities (in the test process) that are intended for the 
design of an intermediate work product (for example, design of a test 
specification). This term differs from test level!

test plan
A document describing the scope, approach, resources, and schedule of 
intended test activities (from [IEEE 829-1998]). 

It identifies, among other test items, the features to be tested, the test-
ing tasks, who will do each task, the degree of tester independence, the test 
environment, the test design techniques, and the techniques for measuring 
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results with a rationale for their choice. Additionally, risks requiring con-
tingency planning are described. Thus, a test plan is a record of the test 
planning process.

The document can be divided into a master test plan or a level test 
plan.

test planning
The activity of establishing or updating a test plan.

test procedure / test script / test schedule
1. Detailed instructions about how to prepare, execute, and evaluate the 

results of a certain test case.
2. A document specifying a sequence of actions for the execution of a 

test.

test process
The fundamental test process comprises all activities necessary for the test 
in a project, such as test planning and control, test analysis and design, test 
implementation and execution, evaluation of exit criteria and reporting, 
and test closure activities.

test report
An alternative term for test summary report.

test result
1. All documents that are written during a test cycle (mainly the test log 

and its evaluation).
2. Release or stopping of a test object (depending on the number and se-

verity of failures discovered).

test robot
A tool to execute tests that uses open or accessible interfaces of the test 
objects (for example, the GUI) to feed in input values and read their 
reactions.

test run
Execution of one or several test cases on a specific version of the test object.

test scenario
A set of test sequences.
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test schedule
1. A list of activities, tasks, or events of the test process identifying their 

intended start and finish dates and/or times and interdependencies 
(among others, the assignment of test cases to testers).

2. List of all test cases, usually grouped by topic or test objective.

test script
Instructions for the automatic execution of a test case or a test sequence 
(or higher-level control of further test tools) in a suitable programming 
language.

test specification 
1. A document that consists of a test design specification, test case 

specification and/or test procedure specification.
2. The activity of specifying a test, typically part of “test analysis and 

design” in the test life cycle.

test strategy
1. Distribution of the test effort over the parts to be tested or the quality 

characteristics of the test object that should be fulfilled. Selection and 
definition of the order (or the interaction) of test methods and the 
order of their application on the different test objects. Definition of the 
test coverage to be achieved by each test method.

2. Abstract description of the test levels and their corresponding start 
and exit criteria. Usually, a test strategy can be used for more than one 
project.

test suite / test sequence
A set of several test cases in which the postcondition of one test is often 
used as the precondition for the next one.

test summary report
A document summarizing testing activities and results. It also contains an 
evaluation of the corresponding test items against exit criteria. Also called 
test report.

test technique
1. See test design technique.
2. A combination of activities to systematically design a test work 

product. In addition to designing test cases, test techniques are availa-
ble for activities such as test estimation, defect management, product 
risk analysis, test execution, and reviews.
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testability
1. Amount of effort and speed with which the functionality and other 

characteristics of the system (even after each maintenance) can be 
tested.

2. Ability of the tested system to be tested. (Aspects are openness of the 
interface, documentation quality, ability to partition the system into 
smaller units, and ability to model the production environment in the 
test environment.)

tester
1. An expert in test execution and reporting defects with knowledge 

about the application domain of the respective test object.
2. A general term for all people working in testing.

test-first programming
Software development process where test cases defining small controllable 
implementation steps are developed before the code is developed. Also 
called test-first design, test-first development, test-driven design, or test-
driven development.

testing
The process consisting of all life cycle activities, both static and dynamic, 
concerned with planning, preparation and evaluation of software products 
and related work products to determine that they satisfy specified require-
ments, to demonstrate that they are fit for purpose and to detect defects.

testware
All documents and possibly tools that are produced or used during the test 
process and are required to plan, design, and execute tests. Such docu-
ments may include scripts, inputs, expected results, setup and clean-up 
procedures, files, databases, environment, and any additional software or 
utilities used in testing. Everything should be usable during maintenance 
and therefore must be transferable and possible to update.

traceability
The ability to identify related items in documentation and software, espe-
cially requirements with associated tests.

tuning
Changing programs or program parameters and/or expanding hardware to 
optimize the time behavior of a hardware/software system.
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unit testing
See component testing.

unit test
See component test.

unnecessary test
A test that is redundant with another already present test and thus does not 
lead to new results.

unreachable code
Code that cannot be reached and therefore is impossible to execute.

use case
A sequence of transactions in a dialogue between an actor and a compo-
nent or system with a tangible result. An actor can be a user or anything 
that can exchange information with the system.

use case testing
A black box test design technique in which test cases are designed to exe-
cute scenarios of use cases.

user acceptance test
An acceptance test on behalf of or executed by users.

validation
Testing if a development result fulfills the individual requirements for a 
specific use.
verification
1. Checking if the outputs from a development phase meet the require-

ments of the phase inputs.
2. Mathematical proof of correctness of a (partial) program.

version
Development state of a software object at a certain point of time. Usually 
given by a number. 

See also configuration.

V-model (generic)
A framework to describe the software development life cycle activities 
from requirements specification to maintenance. The V-model illustrates 
how testing activities can be integrated into each phase of the software 
development life cycle and how intermediate products can be verified and 
validated. Many different variants of the V-model exist nowadays.
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volume testing
Testing in which large amounts of data are manipulated or the system is 
subjected to large volumes of data. 

See also stress testing and load testing.

walkthrough
A manual, usually informal review method to find faults, defects, unclear 
information, and problems in written documents. A walkthrough is done 
using a step-by-step presentation by the author. Additionally, it serves to 
gather information and to establish a common understanding of its con-
tent. Note: For ISTQB purposes, a walkthrough is a formal review as 
opposed to the informal review.

white box test design technique
Any technique used to derive and/or select test cases based on an analysis 
of the internal structure of the test object (see also structural test).
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